Periodic Identification of Astronomical Time Series with Empirical Mode Decomposition and Wavelet Transform Analysis | |
Deng LH(邓林华)1; Li, Z2 | |
会议录名称 | 2013 6TH INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKS AND INTELLIGENT SYSTEMS (ICINIS) |
2013 | |
页码 | 308-311 |
DOI | 10.1109/ICINIS.2013.86 |
会议录编者/会议主办者 | Zhu, H; Eguchi, K; Wu, J |
产权排序 | 第1完成单位 |
收录类别 | EI ; CPCI |
会议名称 | 6th International Conference on Intelligent Networks and Intelligent Systems (ICINIS) |
会议日期 | 2013-11-01 |
会议地点 | Shenyang Inst Engn, Shenyang, PEOPLES R CHINA |
会议赞助商 | Intelligent Networks & Syst Soc; Inst Elect & Elect Engineers; Chinese Acad Sci & Technol Japan; Japanese Neural Network Soc; WSEAS Japan Chapter Intelligence & Informat; IEEE Comp Soc; WSEAS Chinese Chapter Adv Design & Manfacture |
关键词 | Information Processing Periodic Identification Empirical Mode Decomposition Wavelet Transform Analysis |
摘要 | Identification of dominant periodicities is a very important but difficult task in astronomical time series analysis. In the present paper, a new method of periodic identification is proposed in which empirical mode decomposition (EMD) and wavelet transform analysis (WTA) are used in combination. We firstly apply EMD method to decompose a time series into several intrinsic mode functions (IMFs), and then by using WTA approach to identify periodicities in each of IMFs, and finally all of the actual periodicites in astronomical time series can be obtained. Analyses of an observational data set indicate better performance of the proposed EMD-WTA method to identify periodicities. Compared with date compensated discrete Fourier transform and Lomb-Scargle periodogram methods which are widely used presently, the EMD-WTA method not only can improve the periodic identifying capability of a time series, but also can improve overall periodic identification by being able to distinguish system noise, quasi-periodicities, and secular trend. |
资助项目 | Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) ; Ministry of Education ; Chinese Academy of Sciences |
项目资助者 | Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) ; Ministry of Education ; Chinese Academy of Sciences |
语种 | 英语 |
学科领域 | 计算机科学技术 |
文章类型 | Proceedings Paper |
出版者 | IEEE |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
ISBN号 | 978-1-4799-2808-8 |
URL | 查看原文 |
归档日期 | 2014-11-17 |
WOS记录号 | WOS:000345841800080 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Information Systems |
关键词[WOS] | Hilbert Spectrum ; Variability |
EI入藏号 | 20143718147599 |
EI主题词 | Time Series Analysis |
EI分类号 | 716.1information Theory And Signal Processing - 723.2data Processing And Image Processing - 723.4artificial Intelligence - 921.3mathematical Transformations - 922.2mathematical Statistics |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/4859 |
专题 | 抚仙湖太阳观测和研究基地 |
通讯作者 | Deng LH(邓林华) |
作者单位 | 1.Yunnan Astronomical Observatory, University of Chinese Academy of Sciences, Kunming, China 2.School of Astronomy & Space Science, Nanjing University, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing, China |
第一作者单位 | 中国科学院云南天文台 |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Deng LH,Li, Z. Periodic Identification of Astronomical Time Series with Empirical Mode Decomposition and Wavelet Transform Analysis[C]//Zhu, H; Eguchi, K; Wu, J. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2013:308-311. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Periodic Identificat(281KB) | 会议论文 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Deng LH(邓林华)]的文章 |
[Li, Z]的文章 |
百度学术 |
百度学术中相似的文章 |
[Deng LH(邓林华)]的文章 |
[Li, Z]的文章 |
必应学术 |
必应学术中相似的文章 |
[Deng LH(邓林华)]的文章 |
[Li, Z]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论