YNAO OpenIR  > 射电天文研究组
A transformer-based forecasting model for F 10.7 index and its application study on the Chinese Langfang dataset
Ye, Hongwei1; Zheng, Yanfang1; Li, Xuebao1; Dong L(董亮)2,6; Huang, Wengeng3; Wang, Jing3; Yan, Shuainan3,4; Lou, Hengrui5; Yan, Pengchao1; Zhang, Shunhuang1; Li, Xuefeng1; Ling, Yi1; Huang, Xusheng1; Pan, Yexin7
发表期刊ADVANCES IN SPACE RESEARCH
2024-12-15
卷号74期号:12页码:6309-6324
DOI10.1016/j.asr.2024.08.024
产权排序第2完成单位
收录类别SCI
关键词F 10.7 forecasting Bidirectional gating recurrent unit Transformer
摘要The 10.7 cm solar radio flux (F 10.7) is a key indicator of solar activity. Accurately forecasting of F 10 . 7 is crucial for reducing the impact of solar activity on fields such as radio communication, navigation, and satellite communication. In this work, we present a novel channel-independent patch time series Transformer (PatchTST) for F 10 . 7 forecasting. This is the first time that the PatchTST model is applied to F 10.7 forecasting. We construct the F 10 . 7 dataset, which is measured by the Dominion Radio Astrophysical Observatory (DRAO) in Canada. We compare the performance of PatchTST, N-Beats, BiGRU, and CNN-BiGRU on DRAO data. The root mean squared error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (R) of our PatchTST model are 4.731, 2.351%, and 0.986, respectively, which outperforms those of the other models when the prediction length is 1 day. Especially in midterm forecasting, the PatchTST model performs much better than those of the other models. We make uncertainty analyses on these models, and the PatchTST model exhibits superior adaptability to model uncertainty compared to the N-Beats, BiGRU, and CNNBiGRU. The PatchTST model shows a 62.9% improvement in mean error (ME) and a 40.5% improvement in standard mean error (STDE) compared to the benchmark data provided by Space Environment Technologies (SET). This work also shows that our PatchTST model generalizes well by applying it to other F 10.7 observational data originating from Long and Short-band Solar Precision Flux Radiotelescope (L&S) in China. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
资助项目National Natural Science Foundation of China[11703009]; National Natural Science Foundation of China[11803010]; Natural Science Foundation of Jiangsu Province, China[SBK2024023582]; Natural Science Foundation of Jiangsu Province, China[BK20170566]; Natural Science Foundation of Jiangsu Province, China[BK20201199]; National Natural Science Astronomy Joint Fund[U2031133]; Kunming Foreign (International) Cooperation Base Project[GHJD-2021022]; Qing Lan Project
项目资助者National Natural Science Foundation of China[11703009, 11803010] ; Natural Science Foundation of Jiangsu Province, China[SBK2024023582, BK20170566, BK20201199] ; National Natural Science Astronomy Joint Fund[U2031133] ; Kunming Foreign (International) Cooperation Base Project[GHJD-2021022] ; Qing Lan Project
语种英语
学科领域天文学 ; 射电与天文学
文章类型Article
出版者ELSEVIER SCI LTD
出版地125 London Wall, London, ENGLAND
ISSN0273-1177
URL查看原文
WOS记录号WOS:001407046100001
WOS研究方向Engineering ; Astronomy & Astrophysics ; Geology ; Meteorology & Atmospheric Sciences
WOS类目Engineering, Aerospace ; Astronomy & Astrophysics ; Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/28055
专题射电天文研究组
作者单位1.School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
2.Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650216, China;
3.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
4.University of Chinese Academy of Sciences, Beijing 100049, China;
5.School of Software Technology, Zhejiang University, Ningbo 315000, China;
6.Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology, Kunming 650216, China;
7.MailBox 5111, Beijing 100094, China
推荐引用方式
GB/T 7714
Ye, Hongwei,Zheng, Yanfang,Li, Xuebao,et al. A transformer-based forecasting model for F 10.7 index and its application study on the Chinese Langfang dataset[J]. ADVANCES IN SPACE RESEARCH,2024,74(12):6309-6324.
APA Ye, Hongwei.,Zheng, Yanfang.,Li, Xuebao.,董亮.,Huang, Wengeng.,...&Pan, Yexin.(2024).A transformer-based forecasting model for F 10.7 index and its application study on the Chinese Langfang dataset.ADVANCES IN SPACE RESEARCH,74(12),6309-6324.
MLA Ye, Hongwei,et al."A transformer-based forecasting model for F 10.7 index and its application study on the Chinese Langfang dataset".ADVANCES IN SPACE RESEARCH 74.12(2024):6309-6324.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A transformer-based (1925KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ye, Hongwei]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
百度学术
百度学术中相似的文章
[Ye, Hongwei]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
必应学术
必应学术中相似的文章
[Ye, Hongwei]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A transformer-based forecasting model for F 10.7 index and its application study on the Chinese Langfang dataset.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。