PDRs4All III. JWST's NIR spectroscopic view of the Orion Bar | |
Peeters, Els1,2,3; Habart, Emilie4; Berné, Olivier5; Sidhu, Ameek1,2; Chown, Ryan1,2; Putte, Dries Van De6; Trahin, Boris4; Schroetter, Ilane5; Canin, Amélie5; Alarcón, Felipe7; Schefter, Bethany1,2; Khan, Baria1; Pasquini, Sofia1; Tielens, Alexander G. G. M.8,9; Wolfire, Mark G.9; Dartois, Emmanuel10; Goicoechea, Javier R.11; Maragkoudakis, Alexandros12; Onaka, Takashi13,14; Pound, Marc W.9; Vicente, Sílvia15; Abergel, Alain4; Bergin, Edwin A.7; Bernard, Jeronimo16,17; Boersma, Christiaan12; Bron, Emeric18; Cami, Jan1,2,3; Cuadrado, Sara11; Dicken, Daniel19; Elyajouri, Meriem4; Fuente, Asunción20; Gordon, Karl D.6,21; Issa, Lina5; Joblin, Christine5; Kannavou, Olga4; Lacinbala, Ozan22; Languignon, David18; Gal, Romane Le23,24; Meshaka, Raphael4,18; Okada, Yoko25; Robberto, Massimo6,26; Röllig, Markus27,28; Schirmer, Thiébaut4,29; Tabone, Benoit4; Zannese, Marion4; Aleman, Isabel30,31,32; Allamandola, Louis12,33; Auchettl, Rebecca34; Baratta, Giuseppe Antonio35; Bejaoui, Salma12; Bera, Partha P.12,33; Black, John H.29; Boulanger, Francois36; Bouwman, Jordy37,38,39; Brandl, Bernhard8,40; Brechignac, Philippe10; Brünken, Sandra41; Buragohain, Mridusmita42; Burkhardt, Andrew43; Candian, Alessandra44; Cazaux, Stéphanie45; Cernicharo, Jose11; Chabot, Marin46; Chakraborty, Shubhadip47,48; Champion, Jason5; Colgan, Sean W. J.12; Cooke, Ilsa R.49; Coutens, Audrey5; Cox, Nick L. J.16,17; Demyk, Karine5; Meyer, Jennifer Donovan50; Foschino, Sacha5; García, Pedro51; Gerin, Maryvonne52; Gottlieb, Carl A.53; Guillard, Pierre54,55; Gusdorf, Antoine36,52; Hartigan, Patrick56; He JH(何金华)57,58,98; Herbst, Eric59; Hornekaer, Liv60; Jäger, Cornelia61; Janot, Eduardo62; Kaufman, Michael63; Kendrew, Sarah64; Kirsanova, Maria S.65; Klaassen, Pamela19; Kwok, Sun66; Labiano, Álvaro67; Lai, Thomas S.-Y.68; Lee, Timothy J.(12,†); Lefloch, Bertrand69; Petit, Franck Le18; Li, Aigen70; Linz, Hendrik71; Mackie, Cameron J.72,73; Madden, Suzanne C.74; Mascetti, Joëlle75; McGuire, Brett A.50,76; Merino, Pablo77; Micelotta, Elisabetta R.78; Misselt, Karl79; Morse, Jon A.80; Mulas, Giacomo5,99; Neelamkodan, Naslim81; Ohsawa, Ryou82; Paladini, Roberta68; Palumbo, Maria Elisabetta35; Pathak, Amit83; Pendleton, Yvonne J.84; Petrignani, Annemieke85; Pino, Thomas10; Puga, Elena64; Rangwala, Naseem12; Rapacioli, Mathias86; Ricca, Alessandra3,12; Roman, Julia6; Roser, Joseph3,12; Roueff, Evelyne18; Rouillé, Gaël61; Salama, Farid12; Sales, Dinalva A.87; Sandstrom, Karin88; Sarre, Peter89; Sciamma, Ella12; Sellgren, Kris90; Shenoy, Sachindev S.91; Teyssier, David51; Thomas, Richard D.92; Togi, Aditya93; Verstraete, Laurent4; Witt, Adolf N.94; Wootten, Alwyn50; Ysard, Nathalie4; Zettergren, Henning92; Zhang, Yong95; Zhang, Ziwei E.96; Zhen, Junfeng97 | |
发表期刊 | ASTRONOMY & ASTROPHYSICS |
2024-05-14 | |
卷号 | 685 |
DOI | 10.1051/0004-6361/202348244 |
产权排序 | 第57完成单位 |
收录类别 | SCI ; EI |
关键词 | techniques: spectroscopic HII regions photon-dominated region (PDR) infrared: ISM ISM individual objects: Orion Bar |
摘要 | Context. JWST has taken the sharpest and most sensitive infrared (IR) spectral imaging observations ever of the Orion Bar photodissociation region (PDR), which is part of the nearest massive star-forming region the Orion Nebula, and often considered to be the 'prototypical' strongly illuminated PDR. Aims. We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the H II region to the atomic PDR - crossing the ionisation front (IF) -, and the subsequent transition to the molecular PDR - crossing the dissociation front (DF). Given the prevalence of PDRs in the interstellar medium and their dominant contribution to IR radiation, understanding the response of the PDR gas to far-ultraviolet (FUV) photons and the associated physical and chemical processes is fundamental to our understanding of star and planet formation and for the interpretation of any unresolved PDR as seen by JWST. Methods. We used high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science programme. We constructed a 3'' x 25'' spatio-spectral mosaic covering 0.975.27 mu m at a spectral resolution R of similar to 2700 and an angular resolution of 0.075''-0.173''. To study the properties of key regions captured in this mosaic, we extracted five template spectra in apertures centred on the three H-2 dissociation fronts, the atomic PDR, and the H II region. This wealth of detailed spatial-spectral information was analysed in terms of variations in the physical conditions-incident UV field, density, and temperature - of the PDR gas. Results. The NIRSpec data reveal a forest of lines including, but not limited to, He I, H I, and C I recombination lines; ionic lines (e.g. Fe III and Fe II); O I and N I fluorescence lines; aromatic infrared bands (AIBs, including aromatic CH, aliphatic CH, and their CD counterparts); pure rotational and ro-vibrational lines from H2; and ro-vibrational lines from HD, CO, and CH+, with most of them having been detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. In addition, we observed numerous smaller-scale structures whose typical size decreases with distance from theta(1) Ori C and IR lines from C I, if solely arising from radiative recombination and cascade, reveal very high gas temperatures (a few 1000 K) consistent with the hot irradiated surface of small-scale dense clumps inside the PDR. The morphology of the Bar, in particular that of the H-2 lines, reveals multiple prominent filaments that exhibit different characteristics. This leaves the impression of a 'terraced' transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. We attribute the different characteristics of the H2 filaments to their varying depth into the PDR and, in some cases, not reaching the C+/C/CO transition. These observations thus reveal what local conditions are required to drive the physical and chemical processes needed to explain the different characteristics of the DFs and the photochemical evolution of the AIB carriers. Conclusions. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star and planet formation as well as galaxy evolution. |
资助项目 | Association of Universities for Research in Astronomy, Inc., under NASA[NAS 5-03127]; NASA Space Telescope Science Institute[1288]; University of Western Ontario; Institute for Earth and Space Exploration; Canadian Space Agency (CSA)[22JWGO1-16]; Natural Sciences and Engineering Research Council of Canada; Spanish MCINN[PID2019-106110GB-I00]; NASA Ames Research Center through the San Jose State University Research Foundation[80NSSC22M0107]; JSPS Bilateral Program[120219939]; JWST Theory[JWST-AR-01557.001-A]; Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU with INC/INP; CEA; CNES; Deutsche Forschungsgemeinschaft (DFG)[184018867]; Program of Academic Research Projects Management, PRPI-USP; DST, India; Chinese Academy of Sciences (CAS); Russian Science Foundation[21-12-00373]; MCIN/AEI[EUR2021-122006]; MCIN/AEI[TED2021-129416A-I00]; MCIN/AEI[PID2021-125309OA-I00]; European Union NextGenerationEU/PRTR; United Arab Emirates University (UAEU) through UAEU Program for Advanced Research (UPAR)[G00003479]; Banaras Hindu University's IoE grant[R/Dev/D/IoE/Incentive/2021-22/32439]; SERB, New Delhi[CRG/2021/000907]; IUCAA, Pune; Swedish Research Council[2020-03437] |
项目资助者 | Association of Universities for Research in Astronomy, Inc., under NASA[NAS 5-03127] ; NASA Space Telescope Science Institute[1288] ; University of Western Ontario ; Institute for Earth and Space Exploration ; Canadian Space Agency (CSA)[22JWGO1-16] ; Natural Sciences and Engineering Research Council of Canada ; Spanish MCINN[PID2019-106110GB-I00] ; NASA Ames Research Center through the San Jose State University Research Foundation[80NSSC22M0107] ; JSPS Bilateral Program[120219939] ; JWST Theory[JWST-AR-01557.001-A] ; Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU with INC/INP ; CEA ; CNES ; Deutsche Forschungsgemeinschaft (DFG)[184018867] ; Program of Academic Research Projects Management, PRPI-USP ; DST, India ; Chinese Academy of Sciences (CAS) ; Russian Science Foundation[21-12-00373] ; MCIN/AEI[EUR2021-122006, TED2021-129416A-I00, PID2021-125309OA-I00] ; European Union NextGenerationEU/PRTR ; United Arab Emirates University (UAEU) through UAEU Program for Advanced Research (UPAR)[G00003479] ; Banaras Hindu University's IoE grant[R/Dev/D/IoE/Incentive/2021-22/32439] ; SERB, New Delhi[CRG/2021/000907] ; IUCAA, Pune ; Swedish Research Council[2020-03437] |
语种 | 英语 |
学科领域 | 天文学 |
文章类型 | Article |
出版者 | EDP SCIENCES S A |
出版地 | 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE |
ISSN | 0004-6361 |
URL | 查看原文 |
WOS记录号 | WOS:001271220100002 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | POLYCYCLIC AROMATIC-HYDROCARBONS ; TRIGGERED STAR-FORMATION ; NONEQUILIBRIUM PHOTODISSOCIATION REGIONS ; IR ABSORPTION-SPECTROSCOPY ; NEAR-INFRARED SPECTROSCOPY ; RADIO RECOMBINATION LINES ; VIBRATIONALLY EXCITED H-2 ; FAINT EMISSION-LINES ; D BAND STRENGTHS ; MOLECULAR-HYDROGEN |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/27643 |
专题 | 其他 |
作者单位 | 1.Department of Physics & Astronomy, The University of Western Ontario, London ON N6A 3K7, Canada; 2.Institute for Earth and Space Exploration, The University of Western Ontario, London ON N6A 3K7, Canada; 3.Carl Sagan Center, SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, CA 94043, USA; 4.Institut d’Astrophysique Spatiale, Université Paris-Saclay, CNRS, Bâtiment 121, 91405 Orsay Cedex, France; 5.Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III – Paul Sabatier, CNRS, CNES, 9 Av. du colonel Roche, 31028 Toulouse Cedex 04, France; 6.Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; 7.Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA; 8.Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands; 9.Astronomy Department, University of Maryland, College Park, MD 20742, USA; 10.Institut des Sciences Moléculaires d’Orsay, Université Paris-Saclay, CNRS, Bâtiment 520, 91405 Orsay Cedex, France; 11.Instituto de Física Fundamental (CSIC), Calle Serrano 121-123, 28006, Madrid, Spain; 12.NASA Ames Research Center, MS 245-6, Moffett Field, CA 940351000, USA; 13.Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan; 14.Department of Physics, Faculty of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan; 15.Instituto de Astrofísica e Ciências do Espaço, Tapada da Ajuda, Edifício Leste, 2 ° Piso, 1349-018 Lisboa, Portugal; 16.ACRI-ST, Centre d’Etudes et de Recherche de Grasse (CERGA), 10 Av. Nicolas Copernic, 06130 Grasse, France; 17.INCLASS Common Laboratory, 10 Av. Nicolas Copernic, 06130 Grasse, France; 18.LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, 92190 Meudon, France; 19.UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill EH9 3HJ, UK; 20.Observatorio Astronómico Nacional (OAN,IGN), Alfonso XII, 3, 28014 Madrid, Spain; 21.Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium; 22.Quantum Solid State Physics (QSP), Celestijnenlaan 200d – Box 2414, 3001 Leuven, Belgium; 23.Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, CNRS, 38000 Grenoble, France; 24.Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, 38406 Saint-Martin d’Hères, France; 25.I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany; 26.Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA; 27.Physikalischer Verein – Gesellschaft für Bildung und Wissenschaft, Robert-Mayer-Str. 2, 60325 Frankfurt, Germany; 28.Goethe-Universität, Physikalisches Institut, Frankfurt am Main, Germany; 29.Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden; 30.Instituto de Física e Química, Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, 37500-903, Itajubá, MG, Brazil; 31.Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária, Butantã, 05508-090 São Paulo, SP, Brazil; 32.Instituto de Física e Química, Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, 37500-903 Itajubá, MG, Brazil; 33.Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA; 34.Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Victoria, Australia; 35.INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy; 36.Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; 37.Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA; 38.Department of Chemistry, University of Colorado, Boulder, CO 80309, USA; 39.Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT), University of Colorado, Boulder, CO 80303, USA; 40.Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands; 41.Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands; 42.School of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India; 43.Department of Physics, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; 44.Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands; 45.Delft University of Technology, Delft, The Netherlands; 46.Laboratoire de Physique des deux infinis Irène Joliot-Curie, Université Paris-Saclay, CNRS/IN2P3, B â timent 104, 91405 Orsay Cedex, France; 47.Department of Chemistry, GITAM school of Science, GITAM Deemed to be University, Bangalore, India; 48.Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France; 49.Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada; 50.National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA 22903, USA; 51.European Space Astronomy Centre (ESAC/ESA), Villanueva de la Cañada, 28692 Madrid, Spain; 52.Observatoire de Paris, PSL University, Sorbonne Université, LERMA, CNRS, 75014, Paris, France; 53.Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; 54.Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France; 55.Institut Universitaire de France, Ministère de l’Enseignement Supérieur et de la Recherche, 1 rue Descartes, 75231 Paris Cedex 05, France; 56.Department of Physics and Astronomy, Rice University, Houston, TX 77005-1892, USA; 57.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, PR China; 58.Chinese Academy of Sciences South America Center for Astronomy, National Astronomical Observatories, CAS, Beijing 100101, PR China; 59.Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904, USA; 60.InterCat and Dept. Physics and Astron., Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; 61.Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany; 62.Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05509-090 São Paulo, SP, Brazil; 63.Department of Physics and Astronomy, San José State University, San Jose, CA 95192, USA; 64.European Space Agency, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; 65.Institute of Astronomy, Russian Academy of Sciences, 119017, Pyatnitskaya str., 48 , Moscow, Russia; 66.Department of Earth, Ocean, & Atmospheric Sciences, University of British Columbia, British Columbia V6T 1Z4, Canada; 67.Telespazio UK for ESA, ESAC, 28692 Villanueva de la Cañada, Madrid, Spain; 68.IPAC, California Institute of Technology, Pasadena, CA, USA; 69.LAB, Université de Bordeaux, CNRS, B18N, 33615 Pessac, France; 70.Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA; 71.Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; 72.Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 73.Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California – Berkeley, Berkeley, CA, USA; 74.AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France; 75.Institut des Sciences Moléculaires, CNRS, Université de Bordeaux, 33405 Talence, France; 76.Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; 77.Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain; 78.Department of Physics, PO Box 64, 00014 University of Helsinki, Finland; 79.Steward Observatory, University of Arizona, Tucson, AZ 85721-0065, USA; 80.AstronetX PBC, 55 Post Rd W FL 2, Westport, CT 06880, USA; 81.Department of Physics, College of Science, United Arab Emirates University (UAEU), Al-Ain 15551, UAE; 82.National Astronomical Observatory of Japan, National Institutes of Natural Science, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; 83.Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; 84.University of Central Florida, Orlando, FL 32765, USA; 85.Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands; 86.Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, Toulouse, France; 87.Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, 96201-900 Rio Grande, RS, Brazil; 88.Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; 89.School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK; 90.Astronomy Department, Ohio State University, Columbus, OH 43210, USA; 91.Space Science Institute, 4765 Walnut St., R203, Boulder, CO 80301, USA; 92.Department of Physics, Stockholm University, 10691 Stockholm, Sweden; 93.Department of Physics, Texas State University, San Marcos, TX 78666, USA; 94.Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606, USA; 95.School of Physics and Astronomy, Sun Yat-sen University, 2 Da Xue Road, Tangjia, Zhuhai 519000, Guangdong Province, PR China; 96.Star and Planet Formation Laboratory, 0-0 S(RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako, Saitama 351-0198, Japan; 97.Institute of Deep Space Sciences, Deep Space Exploration Laboratory, Hefei 230026, PR China; 98.Departamento de Astronomía, Universidad de Chile, Las Condes, 7591245 Santiago, Chile; 99.INAF – Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy |
推荐引用方式 GB/T 7714 | Peeters, Els,Habart, Emilie,Berné, Olivier,et al. PDRs4All III. JWST's NIR spectroscopic view of the Orion Bar[J]. ASTRONOMY & ASTROPHYSICS,2024,685. |
APA | Peeters, Els.,Habart, Emilie.,Berné, Olivier.,Sidhu, Ameek.,Chown, Ryan.,...&Zhen, Junfeng.(2024).PDRs4All III. JWST's NIR spectroscopic view of the Orion Bar.ASTRONOMY & ASTROPHYSICS,685. |
MLA | Peeters, Els,et al."PDRs4All III. JWST's NIR spectroscopic view of the Orion Bar".ASTRONOMY & ASTROPHYSICS 685(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
PDRs4All III. JWST's(22528KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论