YNAO OpenIR  > 射电天文研究组
A novel solar flare forecast model with deep convolution neural network and one-against-rest approach
Zhang, Shunhuang1; Zheng, Yanfang1; Li, Xuebao1; Ye, Hongwei1; Dong L(董亮)2,3; Huang, Xusheng1; Yan, Pengchao1; Li, Xuefeng1; Wei, Jinfang1; Xiang, Changtian1; Wang, Xiaotian1; Pan, Yexin4
发表期刊ADVANCES IN SPACE RESEARCH
2024-10-01
卷号74期号:7页码:3467-3480
DOI10.1016/j.asr.2024.06.035
产权排序第2完成单位
收录类别SCI
关键词Active regions Magnetic fields Solar flare prediction Deep learning
摘要We present a novel deep Convolutional Neural Network model with one-against-rest approach (OAR-CNN) and modify the hybrid Convolutional Neural Network (H-CNN) model of Zheng et al. (2019) for multiclass flare prediction to forecast whether an active region generates multiclass flare within 24 h. Additionally, in the OAR-CNN and H-CNN models, we employ the decision strategies of majority voting and probability threshold, respectively, comparing the prediction outcomes of these two strategies. Our models undergo training and testing on the same 10 cross-validation datasets as employed by Zheng et al. (2019), and then compare the results with previous studies using forecast verification metrics, with a focus on the true skill statistic (TSS). The major results are summarized as follows. (1) This is the first attempt to utilize the decision strategies of majority voting and probability threshold in the OAR-CNN model for multiclass solar flare prediction. (2) In both the OAR-CNN and H-CNN models, the predictive results with the probability threshold decision strategy are higher than those with majority voting across all six classes (i.e., No-flare, C, M, X, C, and M class), except for a slight decrease in the C class in the OAR-CNN model. (3) The OAR-CNN and modified H-CNN models with the probability threshold decision strategy demonstrate comparable statistical scores across all categories and outperform previous studies. (4) In the prediction of four-class flare, our proposed OAR-CNN model with the probability threshold decision strategy achieves relatively high mean TSS scores of 0.744, 0.429, 0.567, and 0.630 for No-flare, C, M, and X class, respectively, surpassing or comparable to results from prior studies. Furthermore, our model achieves high TSS scores of 0.744 +/- 0.042 for C-class and 0.764 +/- 0.089 for M-class predictions. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
资助项目National Natural Science Foundation of China[11703009]; National Natural Science Foundation of China[11803010]; Natural Science Foundation of Jiangsu Province, China[BK20170566]; Natural Science Foundation of Jiangsu Province, China[BK20201199]; Qing Lan Project; National Natural Science Astronomy Joint Fund[U2031133]; Kunming Foreign (International) Cooperation Base Project[GHJD-2021022]
项目资助者National Natural Science Foundation of China[11703009, 11803010] ; Natural Science Foundation of Jiangsu Province, China[BK20170566, BK20201199] ; Qing Lan Project ; National Natural Science Astronomy Joint Fund[U2031133] ; Kunming Foreign (International) Cooperation Base Project[GHJD-2021022]
语种英语
学科领域天文学 ; 太阳与太阳系
文章类型Article
出版者ELSEVIER SCI LTD
出版地125 London Wall, London, ENGLAND
ISSN0273-1177
URL查看原文
WOS记录号WOS:001298102000001
WOS研究方向Engineering ; Astronomy & Astrophysics ; Geology ; Meteorology & Atmospheric Sciences
WOS类目Engineering, Aerospace ; Astronomy & Astrophysics ; Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences
关键词[WOS]SPACE-WEATHER
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27579
专题射电天文研究组
作者单位1.School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
2.Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650216, China;
3.Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology, Kunming 650216, China;
4.MailBox 5111, Beijing 100094, China;
5.Jiangsu Univ Sci & Technol, Sch Comp Sci, Zhenjiang 212100, Peoples R China;
6.Chinese Acad Sci, Yunnan Astron Observ, Kunming 650216, Peoples R China;
7.Yunnan Sino Malaysian Int Joint Lab HF VHF Adv Rad, Kunming 650216, Peoples R China;
8.MailBox 5111, Beijing 100094, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Shunhuang,Zheng, Yanfang,Li, Xuebao,et al. A novel solar flare forecast model with deep convolution neural network and one-against-rest approach[J]. ADVANCES IN SPACE RESEARCH,2024,74(7):3467-3480.
APA Zhang, Shunhuang.,Zheng, Yanfang.,Li, Xuebao.,Ye, Hongwei.,董亮.,...&Pan, Yexin.(2024).A novel solar flare forecast model with deep convolution neural network and one-against-rest approach.ADVANCES IN SPACE RESEARCH,74(7),3467-3480.
MLA Zhang, Shunhuang,et al."A novel solar flare forecast model with deep convolution neural network and one-against-rest approach".ADVANCES IN SPACE RESEARCH 74.7(2024):3467-3480.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A novel solar flare (2495KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Shunhuang]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
百度学术
百度学术中相似的文章
[Zhang, Shunhuang]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
必应学术
必应学术中相似的文章
[Zhang, Shunhuang]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A novel solar flare forecast model with deep convolution neural network and one-against-rest approach.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。