Pulsar candidate identification using advanced transformer-based models
Cao, Jie1; Xu, Tingting1; Deng, Linhua1; Zhou, Xueliang1; Li, Shangxi1; Liu, Yuxia1; Zhou, Weihong1,2
发表期刊CHINESE JOURNAL OF PHYSICS
2024-08
卷号90页码:121-133
DOI10.1016/j.cjph.2024.05.020
收录类别SCI
关键词Pulsars General Methods Data analysis Techniques Image processing
摘要Rapid and accurate identification of pulsars is a significant topic for large radio telescope surveys. With the enhancement of astronomical instruments, modern radio telescopes are witnessing an exponential increase in pulsar candidate detections. The application of artificial intelligence for the identification of pulsar candidates is an automated and highly effective solution to tackle the challenge of processing and recognizing vast volumes of data. In this work, using the data released by two surveys, the Commensal Radio Astronomy FasT Survey (CRAFTS) and High -Time Resolution Universe (HTRU), we propose a new framework to identify pulsar candidates. Firstly, due to the small number of real pulsars, we compare the performance of different data augmentation methods and find that the pulsar samples generated by the Deep Convolutional Generative Adversarial Network (DCGAN) based on deep learning techniques are closer to real pulsars. Secondly, we use two transformer -based classification models, Vision Transformer (ViT) and Convolutional Vision Transformer (CvT), to classify pulsar candidates, and find that the evaluation indexes of pulsar candidate classification based on two transformers can reach 100%. Finally, we use the t -distributed Stochastic Neighbor Embedding (t-SNE) algorithm to visualize the results of our identification framework. The results showed that pulsar and non -pulsar samples are separated from each other in multidimensional space. Therefore, it is a new attempt to apply transformer technology to pulsar candidate classification, and it could be of great significance to subsequent theoretical research.
资助项目National Nature Science Foundation of China[61561053]; Yunnan Fundamental Research Projects, China[202301AV070007]; Yunnan Fundamental Research Projects, China[202401AU070026]; Yunnan Revitalization Talent Support Program Innovation Team Project, China[202405AS350012]; Scientific Research Foundation Project of Yunnan Education Department, China[2023J0624]; Scientific Research Foundation Project of Yunnan Education Department, China[2024Y469]
项目资助者National Nature Science Foundation of China[61561053] ; Yunnan Fundamental Research Projects, China[202301AV070007, 202401AU070026] ; Yunnan Revitalization Talent Support Program Innovation Team Project, China[202405AS350012] ; Scientific Research Foundation Project of Yunnan Education Department, China[2023J0624, 2024Y469]
语种英语
学科领域天文学 ; 射电天文学
文章类型Article
出版者ELSEVIER
出版地RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
ISSN0577-9073
URL查看原文
WOS记录号WOS:001246487300001
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
关键词[WOS]CLASSIFICATION ; DISCOVERY
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27396
专题中国科学院天体结构与演化重点实验室
作者单位1.School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China;
2.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy China of Sciences, Kunming 650011, China
推荐引用方式
GB/T 7714
Cao, Jie,Xu, Tingting,Deng, Linhua,et al. Pulsar candidate identification using advanced transformer-based models[J]. CHINESE JOURNAL OF PHYSICS,2024,90:121-133.
APA Cao, Jie.,Xu, Tingting.,Deng, Linhua.,Zhou, Xueliang.,Li, Shangxi.,...&Zhou, Weihong.(2024).Pulsar candidate identification using advanced transformer-based models.CHINESE JOURNAL OF PHYSICS,90,121-133.
MLA Cao, Jie,et al."Pulsar candidate identification using advanced transformer-based models".CHINESE JOURNAL OF PHYSICS 90(2024):121-133.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Pulsar candidate ide(2574KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Jie]的文章
[Xu, Tingting]的文章
[Deng, Linhua]的文章
百度学术
百度学术中相似的文章
[Cao, Jie]的文章
[Xu, Tingting]的文章
[Deng, Linhua]的文章
必应学术
必应学术中相似的文章
[Cao, Jie]的文章
[Xu, Tingting]的文章
[Deng, Linhua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Pulsar candidate identification using advanced transformer-based models.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。