YNAO OpenIR  > 南方基地
Detection of Contact Binary Candidates Observed By TESS Using the Autoencoder Neural Network
Ding X(丁旭)1,2,3; Song, ZhiMing4,5; Wang CJ(王传军)1,2,3,6; Ji KF(季凯帆)1,2,3,6
发表期刊ASTRONOMICAL JOURNAL
2024-05-01
卷号167期号:5
DOI10.3847/1538-3881/ad3048
产权排序第1完成单位
收录类别SCI
摘要A contact binary may be the progenitor of a red nova that eventually produces a merger event and have a cut-off period of around 0.2 days. Therefore, a large number of contact binaries is needed to search for the progenitor of red novae and to study the characteristics of short-period contact binaries. In this paper, we employ the Phoebe program to generate a large number of light curves based on the fundamental parameters of contact binaries. Using these light curves as samples, an autoencoder model is trained, which can reconstruct the light curves of contact binaries very well. When the error between the output light curve from the model and the input light curve is large, it may be due to other types of variable stars. The goodness of fit (R 2) between the output light curve from the model and the input light curve is calculated. Based on the thresholds for global goodness of fit (R 2), period, range magnitude, and local goodness of fit (R 2), a total of 1322 target candidates were obtained.
资助项目Chinese Natural Science Foundation; Yunnan Provincial Foundation[202101AT070020]; National Key R&D Program of China[2022YFF0711500]; National Key R&D Program of China[2023YFA1608300]; Yunnan Provincial Key Laboratory of Forensic Science[YJXK005]; Yunnan Basic Research Program[202201AU070116]; China Manned Space Project;[12103088]
项目资助者Chinese Natural Science Foundation ; Yunnan Provincial Foundation[202101AT070020] ; National Key R&D Program of China[2022YFF0711500, 2023YFA1608300] ; Yunnan Provincial Key Laboratory of Forensic Science[YJXK005] ; Yunnan Basic Research Program[202201AU070116] ; China Manned Space Project ; [12103088]
语种英语
学科领域天文学 ; 恒星与银河系
文章类型Article
出版者IOP Publishing Ltd
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0004-6256
URL查看原文
WOS记录号WOS:001196691200001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]MINIMUM MASS-RATIO ; ECLIPSING BINARIES ; CATALOG ; STARS. ; I. ; PARAMETERS ; PROJECT ; SYSTEMS ; II.
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27042
专题南方基地
中国科学院天体结构与演化重点实验室
天文技术实验室
作者单位1.Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650216 Kunming, People's Republic of China; [email protected], [email protected], [email protected];
2.Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P.O. Box 110, 650216 Kunming, People's Republic of China;
3.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012, People's Republic of China;
4.School of Information, Yunnan University of Finance and Economics, Kunming, People's Republic of China;
5.Yunnan Key Laboratory of Service Computing, Kunming, People's Republic of China;
6.University of the Chinese Academy of Sciences, Yuquan Road 19#, Shijingshan Block, 100049 Beijing, People's Republic of China
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Ding X,Song, ZhiMing,Wang CJ,et al. Detection of Contact Binary Candidates Observed By TESS Using the Autoencoder Neural Network[J]. ASTRONOMICAL JOURNAL,2024,167(5).
APA 丁旭,Song, ZhiMing,王传军,&季凯帆.(2024).Detection of Contact Binary Candidates Observed By TESS Using the Autoencoder Neural Network.ASTRONOMICAL JOURNAL,167(5).
MLA 丁旭,et al."Detection of Contact Binary Candidates Observed By TESS Using the Autoencoder Neural Network".ASTRONOMICAL JOURNAL 167.5(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Detection of Contact(2401KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[丁旭]的文章
[Song, ZhiMing]的文章
[王传军]的文章
百度学术
百度学术中相似的文章
[丁旭]的文章
[Song, ZhiMing]的文章
[王传军]的文章
必应学术
必应学术中相似的文章
[丁旭]的文章
[Song, ZhiMing]的文章
[王传军]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Detection of Contact Binary Candidates Observed By TESS Using the Autoencoder Neural Network.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。