Galaxy morphology classification based on Convolutional vision Transformer (CvT)
Cao, Jie1; Xu, Tingting1; Deng, Yuhe1; Deng, Linhua1; Yang, Mingcun1; Liu, Zhijing1; Zhou, Weihong1,2
发表期刊ASTRONOMY & ASTROPHYSICS
2024-03-05
卷号683
DOI10.1051/0004-6361/202348544
收录类别SCI
关键词methods: data analysis techniques: image processing Galaxy: general
摘要Context. The classification of galaxy morphology is among the most active fields in astronomical research today. With the development of artificial intelligence technology, deep learning is a useful tool in the classification of the morphology of galaxies and significant progress has been made in this domain. However, there is still some room for improvement in terms of classification accuracy, automation, and related issues. Aims. Convolutional vision Transformer (CvT) is an improved version of the Vision Transformer (ViT) model. It improves the performance of the ViT model by introducing a convolutional neural network (CNN). This study explores the performance of the CvT model in the area of galaxy morphology classification. Methods. In this work, the CvT model was applied, for the first time, in a five-class classification task of galaxy morphology. We added different types and degrees of noise to the original galaxy images to verify that the CvT model achieves good classification performance, even in galaxy images with low signal-to-noise ratios (S/Ns). Then, we also validated the classification performance of the CvT model for galaxy images at different redshifts based on the low-redshift dataset GZ2 and the high-redshift dataset Galaxy Zoo CANDELS. In addition, we visualized and analyzed the classification results of the CvT model based on the t-distributed stochastic neighborhood -embedding (t-SNE) algorithm. Results. We find that (1) compared with other five-class classification models of galaxy morphology based on CNN models, the average accuracy, precision, recall, and F1_score evaluation metrics of the CvT classification model are all higher than 98%, which is an improvement of at least 1% compared with those based on CNNs; (2) the classification visualization results show that different categories of galaxies are separated from each other in multi-dimensional space. Conclusions. The application of the CvT model to the classification study of galaxy morphology is a novel undertaking that carries important implications for future studies.
资助项目National Nature Science Foundation of China[61561053]; Scientific Research Foundation Project of Yunnan Education Department[2023J0624]; Yunnan Fundamental Research Projects[202301AV070007]; Yunnan Revitalization Talent Support Program Innovation Team Project
项目资助者National Nature Science Foundation of China[61561053] ; Scientific Research Foundation Project of Yunnan Education Department[2023J0624] ; Yunnan Fundamental Research Projects[202301AV070007] ; Yunnan Revitalization Talent Support Program Innovation Team Project
语种英语
学科领域天文学
文章类型Article
出版者EDP SCIENCES S A
出版地17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE
ISSN0004-6361
URL查看原文
WOS记录号WOS:001185549200001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]ZOO
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26741
专题中国科学院天体结构与演化重点实验室
作者单位1.School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan 650504, PR China;
2.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy China of Sciences, Kunming, Yunnan 650011, PR China
推荐引用方式
GB/T 7714
Cao, Jie,Xu, Tingting,Deng, Yuhe,et al. Galaxy morphology classification based on Convolutional vision Transformer (CvT)[J]. ASTRONOMY & ASTROPHYSICS,2024,683.
APA Cao, Jie.,Xu, Tingting.,Deng, Yuhe.,Deng, Linhua.,Yang, Mingcun.,...&Zhou, Weihong.(2024).Galaxy morphology classification based on Convolutional vision Transformer (CvT).ASTRONOMY & ASTROPHYSICS,683.
MLA Cao, Jie,et al."Galaxy morphology classification based on Convolutional vision Transformer (CvT)".ASTRONOMY & ASTROPHYSICS 683(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Galaxy morphology cl(1895KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Jie]的文章
[Xu, Tingting]的文章
[Deng, Yuhe]的文章
百度学术
百度学术中相似的文章
[Cao, Jie]的文章
[Xu, Tingting]的文章
[Deng, Yuhe]的文章
必应学术
必应学术中相似的文章
[Cao, Jie]的文章
[Xu, Tingting]的文章
[Deng, Yuhe]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Galaxy morphology classification based on Convolutional vision Transformer (CvT).pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。