YNAO OpenIR  > 抚仙湖太阳观测和研究基地
Solar cycle prediction using a combinatorial deep learning model
Su, Xu1,2; Liang, Bo1; Feng, Song1,2; Cai YF(蔡云芳)2,3; Dai, Wei1; Yang, Yunfei1
发表期刊MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
2023-11-27
卷号527期号:3页码:5675-5682
DOI10.1093/mnras/stad3451
产权排序第3完成单位
收录类别SCI ; EI
关键词methods: data analysis Sun: activity
摘要The long-term prediction of the solar cycle is of great significance for aerospace, communication, and space missions. For a long time, many studies have used relatively primitive deep learning methods to predict the solar cycle, and most of them do not perform well in the long-term prediction. In this paper, we proposed XG-SN ensemble model. The model used extreme gradient boosting (XGBoost) ensemble learning method, combined with sample convolution and interaction net (SCINet), and neural basis expansion analysis for the interpretable time series (N-BEATS) to make predictions for known solar cycles. 13 months of smoothed monthly total sunspot numbers were selected as the data set. The model performance was evaluated by mean absolute error (MAE), root-mean-square error (RMSE), and mean absolute time lag (MATL) between the predicted and actual values. The first two evaluation metrics measured the prediction deviation from the numerical dimension, and the last one measured the prediction deviation from the temporal dimension. The results show that the model achieves the MAE, RMSE, and MATL values of 13.19, 17.13, and 0.08, respectively, in Solar Cycle 13 to 24. Our model is able to better predict in most cycles, ensuring accurate prediction of peaks with little time lag.
资助项目National Natural Science Foundation of China[12063003]; National Natural Science Foundation of China[YNSPCC202214]; Yunnan Key Laboratory of the Solar Physics and Space Science
项目资助者National Natural Science Foundation of China[12063003] ; National Natural Science Foundation of China[YNSPCC202214] ; Yunnan Key Laboratory of the Solar Physics and Space Science
语种英语
学科领域天文学
文章类型Article
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0035-8711
URL查看原文
WOS记录号WOS:001116922000027
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]NEURAL-NETWORK
EI入藏号20235115233702
EI主题词Forecasting
EI分类号461.4 Ergonomics and Human Factors Engineering - 657.1 Solar Energy and Phenomena - 922.2 Mathematical Statistics
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26532
专题抚仙湖太阳观测和研究基地
作者单位1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;
2.Yunnan Key Laboratory of the Solar physics and Space Science, Kunming 650216, China;
3.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China
推荐引用方式
GB/T 7714
Su, Xu,Liang, Bo,Feng, Song,et al. Solar cycle prediction using a combinatorial deep learning model[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2023,527(3):5675-5682.
APA Su, Xu,Liang, Bo,Feng, Song,蔡云芳,Dai, Wei,&Yang, Yunfei.(2023).Solar cycle prediction using a combinatorial deep learning model.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,527(3),5675-5682.
MLA Su, Xu,et al."Solar cycle prediction using a combinatorial deep learning model".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 527.3(2023):5675-5682.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Solar cycle predicti(1683KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Su, Xu]的文章
[Liang, Bo]的文章
[Feng, Song]的文章
百度学术
百度学术中相似的文章
[Su, Xu]的文章
[Liang, Bo]的文章
[Feng, Song]的文章
必应学术
必应学术中相似的文章
[Su, Xu]的文章
[Liang, Bo]的文章
[Feng, Song]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Solar cycle prediction using a combinatorial deep learning model.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。