Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning | |
Li JJ(李佳佳)1,2,3; Wang JL(王锦良)1,2; Ji KF(季凯帆)1,2; Liu, Chao2,4; Chen HL(陈海亮)1,2; Han ZW(韩占文)1,2,5; Chen XF(陈雪飞)1,2,3,5 | |
发表期刊 | Monthly Notices of the Royal Astronomical Society |
2024-01 | |
卷号 | 527期号:2页码:2251-2260 |
DOI | 10.1093/mnras/stad3047 |
产权排序 | 第1完成单位 |
收录类别 | SCI ; EI |
关键词 | (stars:) binaries: general (techniques:) photometric line identification methods: statistical |
摘要 | The statistical properties of double main sequence (MS) binaries are very important for binary evolution and binary population synthesis. To obtain these properties, we need to identify these MS binaries. In this paper, we have developed a method to differentiate single MS stars from double MS binaries from the Chinese Space Station Telescope (CSST) Survey with machine learning. This method is reliable and efficient to identify binaries with mass ratios between 0.20 and 0.80, which is independent of the mass ratio distribution. But the number of binaries identified with this method is not a good approximation to the number of binaries in the original sample due to the low detection efficiency of binaries with mass ratios smaller than 0.20 or larger than 0.80. Therefore, we have improved this point by using the detection efficiencies of our method and an empirical mass ratio distribution and then can infer the binary fraction in the sample. Once the CSST data are available, we can identify MS binaries with our trained multi-layer perceptron model and derive the binary fraction of the sample. |
资助项目 | National Natural Science Foundation of China[12125303]; National Natural Science Foundation of China[12288102]; National Natural Science Foundation of China[12090040/3]; National Key R&D Program of China[2021YFA1600403]; Yunnan Fundamental Research Projects[202201BC070003]; International Centre of Supernovae, Yunnan Key Laboratory[202302AN360001]; Yunnan Revitalization Talent Support Programme Science & Technology Champion Project[202305AB350003]; China Manned Space Project[CMS-CSST-2021-A10] |
项目资助者 | National Natural Science Foundation of China[12125303, 12288102, 12090040/3] ; National Key R&D Program of China[2021YFA1600403] ; Yunnan Fundamental Research Projects[202201BC070003] ; International Centre of Supernovae, Yunnan Key Laboratory[202302AN360001] ; Yunnan Revitalization Talent Support Programme Science & Technology Champion Project[202305AB350003] ; China Manned Space Project[CMS-CSST-2021-A10] |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | OXFORD UNIV PRESS |
出版地 | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND |
ISSN | 0035-8711 |
URL | 查看原文 |
WOS记录号 | WOS:001143378500049 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | SUBDWARF-B-STARS ; POPULATION SYNTHESIS ; GALACTIC POPULATION ; COMPACT OBJECTS ; MESA ISOCHRONES ; CCD PHOTOMETRY ; WIDE BINARIES ; FRACTION ; MASS ; MULTIPLICITY |
EI入藏号 | 20234915143672 |
EI主题词 | Efficiency |
EI分类号 | 656.1 Space Flight - 657.2 Extraterrestrial Physics and Stellar Phenomena - 723.4 Artificial Intelligence - 913.1 Production Engineering |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/26527 |
专题 | 大样本恒星演化研究组 天文技术实验室 |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, P. R. China; 2.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China; 3.International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China; 4.Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, P. R. China; 5.Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, P. R. China |
第一作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Li JJ,Wang JL,Ji KF,et al. Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning[J]. Monthly Notices of the Royal Astronomical Society,2024,527(2):2251-2260. |
APA | 李佳佳.,王锦良.,季凯帆.,Liu, Chao.,陈海亮.,...&陈雪飞.(2024).Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning.Monthly Notices of the Royal Astronomical Society,527(2),2251-2260. |
MLA | 李佳佳,et al."Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning".Monthly Notices of the Royal Astronomical Society 527.2(2024):2251-2260. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Identify main-sequen(2843KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[李佳佳]的文章 |
[王锦良]的文章 |
[季凯帆]的文章 |
百度学术 |
百度学术中相似的文章 |
[李佳佳]的文章 |
[王锦良]的文章 |
[季凯帆]的文章 |
必应学术 |
必应学术中相似的文章 |
[李佳佳]的文章 |
[王锦良]的文章 |
[季凯帆]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论