YNAO OpenIR  > 大样本恒星演化研究组
Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning
Li JJ(李佳佳)1,2,3; Wang JL(王锦良)1,2; Ji KF(季凯帆)1,2; Liu, Chao2,4; Chen HL(陈海亮)1,2; Han ZW(韩占文)1,2,5; Chen XF(陈雪飞)1,2,3,5
发表期刊Monthly Notices of the Royal Astronomical Society
2024-01
卷号527期号:2页码:2251-2260
DOI10.1093/mnras/stad3047
产权排序第1完成单位
收录类别SCI ; EI
关键词(stars:) binaries: general (techniques:) photometric line identification methods: statistical
摘要The statistical properties of double main sequence (MS) binaries are very important for binary evolution and binary population synthesis. To obtain these properties, we need to identify these MS binaries. In this paper, we have developed a method to differentiate single MS stars from double MS binaries from the Chinese Space Station Telescope (CSST) Survey with machine learning. This method is reliable and efficient to identify binaries with mass ratios between 0.20 and 0.80, which is independent of the mass ratio distribution. But the number of binaries identified with this method is not a good approximation to the number of binaries in the original sample due to the low detection efficiency of binaries with mass ratios smaller than 0.20 or larger than 0.80. Therefore, we have improved this point by using the detection efficiencies of our method and an empirical mass ratio distribution and then can infer the binary fraction in the sample. Once the CSST data are available, we can identify MS binaries with our trained multi-layer perceptron model and derive the binary fraction of the sample.
资助项目National Natural Science Foundation of China[12125303]; National Natural Science Foundation of China[12288102]; National Natural Science Foundation of China[12090040/3]; National Key R&D Program of China[2021YFA1600403]; Yunnan Fundamental Research Projects[202201BC070003]; International Centre of Supernovae, Yunnan Key Laboratory[202302AN360001]; Yunnan Revitalization Talent Support Programme Science & Technology Champion Project[202305AB350003]; China Manned Space Project[CMS-CSST-2021-A10]
项目资助者National Natural Science Foundation of China[12125303, 12288102, 12090040/3] ; National Key R&D Program of China[2021YFA1600403] ; Yunnan Fundamental Research Projects[202201BC070003] ; International Centre of Supernovae, Yunnan Key Laboratory[202302AN360001] ; Yunnan Revitalization Talent Support Programme Science & Technology Champion Project[202305AB350003] ; China Manned Space Project[CMS-CSST-2021-A10]
语种英语
学科领域天文学 ; 恒星与银河系
文章类型Article
出版者OXFORD UNIV PRESS
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN0035-8711
URL查看原文
WOS记录号WOS:001143378500049
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]SUBDWARF-B-STARS ; POPULATION SYNTHESIS ; GALACTIC POPULATION ; COMPACT OBJECTS ; MESA ISOCHRONES ; CCD PHOTOMETRY ; WIDE BINARIES ; FRACTION ; MASS ; MULTIPLICITY
EI入藏号20234915143672
EI主题词Efficiency
EI分类号656.1 Space Flight - 657.2 Extraterrestrial Physics and Stellar Phenomena - 723.4 Artificial Intelligence - 913.1 Production Engineering
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26527
专题大样本恒星演化研究组
天文技术实验室
作者单位1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, P. R. China;
2.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
3.International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China;
4.Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, P. R. China;
5.Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, P. R. China
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Li JJ,Wang JL,Ji KF,et al. Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning[J]. Monthly Notices of the Royal Astronomical Society,2024,527(2):2251-2260.
APA 李佳佳.,王锦良.,季凯帆.,Liu, Chao.,陈海亮.,...&陈雪飞.(2024).Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning.Monthly Notices of the Royal Astronomical Society,527(2),2251-2260.
MLA 李佳佳,et al."Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning".Monthly Notices of the Royal Astronomical Society 527.2(2024):2251-2260.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Identify main-sequen(2843KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李佳佳]的文章
[王锦良]的文章
[季凯帆]的文章
百度学术
百度学术中相似的文章
[李佳佳]的文章
[王锦良]的文章
[季凯帆]的文章
必应学术
必应学术中相似的文章
[李佳佳]的文章
[王锦良]的文章
[季凯帆]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Identify main-sequence binaries from the Chinese Space Station Telescope Survey with machine learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。