Institutional Repository System Of Yunnan Observatories, CAS
Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning | |
Shang, Zhen-Hong1,2; Mu, Si-Yu1; Ji KF(季凯帆)3; Qiang, Zhen-Ping4 | |
发表期刊 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS |
2023-06-01 | |
卷号 | 23期号:6 |
DOI | 10.1088/1674-4527/accbaf |
产权排序 | 第3完成单位 |
收录类别 | SCI |
关键词 | methods: data analysis techniques: image processing Sun: fundamental parameters |
摘要 | To address the problem of the low accuracy of transverse velocity field measurements for small targets in high -resolution solar images, we proposed a novel velocity field measurement method for high-resolution solar images based on PWCNet. This method transforms the transverse velocity field measurements into an optical flow field prediction problem. We evaluated the performance of the proposed method using the Ha and TiO data sets obtained from New Vacuum Solar Telescope observations. The experimental results show that our method effectively predicts the optical flow of small targets in images compared with several typical machine-and deep-learning methods. On the Ha data set, the proposed method improves the image structure similarity from 0.9182 to 0.9587 and reduces the mean of residuals from 24.9931 to 15.2818; on the TiO data set, the proposed method improves the image structure similarity from 0.9289 to 0.9628 and reduces the mean of residuals from 25.9908 to 17.0194. The optical flow predicted using the proposed method can provide accurate data for the atmospheric motion information of solar images. The code implementing the proposed method is available on https://github. com/lygmsy123/transverse-velocity-field-measurement. |
资助项目 | National Natural Science Foundation of China[12063002] ; National Natural Science Foundation of China[12163004] ; National Natural Science Foundation of China[12073077] |
项目资助者 | National Natural Science Foundation of China[12063002, 12163004, 12073077] |
语种 | 英语 |
学科领域 | 天文学 ; 太阳与太阳系 ; 计算机科学技术 ; 人工智能 ; 计算机应用 |
文章类型 | Article |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA |
ISSN | 1674-4527 |
URL | 查看原文 |
WOS记录号 | WOS:000991570500001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/26043 |
专题 | 天文技术实验室 |
通讯作者 | Shang, Zhen-Hong |
作者单位 | 1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; [email protected]; 2.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China; 3.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; 4.College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China |
推荐引用方式 GB/T 7714 | Shang, Zhen-Hong,Mu, Si-Yu,Ji KF,et al. Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2023,23(6). |
APA | Shang, Zhen-Hong,Mu, Si-Yu,Ji KF,&Qiang, Zhen-Ping.(2023).Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,23(6). |
MLA | Shang, Zhen-Hong,et al."Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 23.6(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Transverse Velocity (1151KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论