YNAO OpenIR  > 天文技术实验室
Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning
Shang, Zhen-Hong1,2; Mu, Si-Yu1; Ji KF(季凯帆)3; Qiang, Zhen-Ping4
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2023-06-01
卷号23期号:6
DOI10.1088/1674-4527/accbaf
产权排序第3完成单位
收录类别SCI
关键词methods: data analysis techniques: image processing Sun: fundamental parameters
摘要

To address the problem of the low accuracy of transverse velocity field measurements for small targets in high -resolution solar images, we proposed a novel velocity field measurement method for high-resolution solar images based on PWCNet. This method transforms the transverse velocity field measurements into an optical flow field prediction problem. We evaluated the performance of the proposed method using the Ha and TiO data sets obtained from New Vacuum Solar Telescope observations. The experimental results show that our method effectively predicts the optical flow of small targets in images compared with several typical machine-and deep-learning methods. On the Ha data set, the proposed method improves the image structure similarity from 0.9182 to 0.9587 and reduces the mean of residuals from 24.9931 to 15.2818; on the TiO data set, the proposed method improves the image structure similarity from 0.9289 to 0.9628 and reduces the mean of residuals from 25.9908 to 17.0194. The optical flow predicted using the proposed method can provide accurate data for the atmospheric motion information of solar images. The code implementing the proposed method is available on https://github. com/lygmsy123/transverse-velocity-field-measurement.

资助项目National Natural Science Foundation of China[12063002] ; National Natural Science Foundation of China[12163004] ; National Natural Science Foundation of China[12073077]
项目资助者National Natural Science Foundation of China[12063002, 12163004, 12073077]
语种英语
学科领域天文学 ; 太阳与太阳系 ; 计算机科学技术 ; 人工智能 ; 计算机应用
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:000991570500001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/26043
专题天文技术实验室
通讯作者Shang, Zhen-Hong
作者单位1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; [email protected];
2.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China;
3.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China;
4.College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China
推荐引用方式
GB/T 7714
Shang, Zhen-Hong,Mu, Si-Yu,Ji KF,et al. Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2023,23(6).
APA Shang, Zhen-Hong,Mu, Si-Yu,Ji KF,&Qiang, Zhen-Ping.(2023).Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,23(6).
MLA Shang, Zhen-Hong,et al."Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 23.6(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Transverse Velocity (1151KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shang, Zhen-Hong]的文章
[Mu, Si-Yu]的文章
[Ji KF(季凯帆)]的文章
百度学术
百度学术中相似的文章
[Shang, Zhen-Hong]的文章
[Mu, Si-Yu]的文章
[Ji KF(季凯帆)]的文章
必应学术
必应学术中相似的文章
[Shang, Zhen-Hong]的文章
[Mu, Si-Yu]的文章
[Ji KF(季凯帆)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Transverse Velocity Field Measurements in High-resolution Solar Images Based on Deep Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。