YNAO OpenIR  > 太阳物理研究组
日冕物质抛射的伴生现象研究
其他题名Studies on the Associated Features of Coronal Mass Ejections
谢小妍
学位类型博士
导师林隽
2022
学位授予单位中国科学院大学
学位授予地点北京
培养单位中国科学院云南天文台
学位专业天体物理
关键词日冕物质抛射 耀斑 磁重联 磁流体动力学
摘要我们使用数值模拟和观测的手段来探究日冕物质抛射的伴生现象研究:基于Isenberg等人(1993)的太阳爆发的灾变模型,我们采用磁流体动力学数值模拟实验的方法来研究太阳爆发过程对太阳大气的扰动以及CME-耀斑电流片动力学演化的精细物理特征;我们对6个耀斑观测事件中的磁拱上方的下降流(Supra-arcade downflow, SAD)的动力学特征进行了统计分析。 在已有工作的基础上,我们首先进一步考察了爆发过程中的磁结构对周围环境的扰动,并确认了几个重要的扰动特征与观测结果之间的对应关系。众所周知,爆发过程中的磁结构在向外快速运动时会在其前方激发出快模激波,而后者在前进的过程中也在向四周快速膨胀,当它膨胀至能够接触到底边界时,就会与底边界相互作用,形成Moreton波,同时激起回波,并搅动底边界附近的高密度等离子体,导致一部分的等离子体在其后方堆积,在低日冕区形成一个等离子体的“堆积面”。我们发现,这个堆积面的形成高度和运动特征与相同高度上的EUV波非常相似;另一方面,“堆积面”跟在Moreton波的后面向外传播,速度大约是Moreton 波的1/3,这与有些EUV 波的速度与Moreton波速度之比一致。我们认为这个等离子体堆积面是EUV波的一个源区。在数值计算结果的基础上,我们还重建了SDO/AIA在不同波段“观测”到的图像。结果表明,在不同波段上“观测”到的EUV 波的特征的确不同,与实际EUV波的观测结果一致。通过模拟与观测的对比,我们还首次提出了证认回波的方法,并进一步表明回波确实可以被观测到,证实了EUV波的“真波”本质。 在针对CME-耀斑电流片的工作中,我们注意到,电流片中离开太阳的磁重联外流以及等离子体团进入CME泡之后,会在CME泡底部的缓冲区产生终止激波并发生等离子体堆积,而且因为堆积的不均匀性而产生瑞丽-泰勒(RT)不稳定性,最终导致缓冲区在x方向上发生局部振荡。这种振荡会沿着电流片向下传播,引起电流片的振荡。随着缓冲区的演化,缓冲区的振荡周期变长,从30 s逐渐增加到16 min。同时,耀斑环顶还存在着另一种由速度剪切引起的周期为0.25 min到1.5 min的振荡模式。当电流片演化到一定的长度时,电流片还会发生撕裂膜不稳定性,导致等离子团的形成、并沿不同方向运动。大部分等离子体团的运动都有加速的成分,根据磁重联的标准模型,这意味着在实际的太阳爆发事件中,耗散区可以充满大尺度CME-耀斑电流片的大部分区域。 在对SAD的动力学特征的统计研究工作中,我们开发了一种跟踪算法来计算SAD的速度,并建立了一个系统来自动跟踪SAD,测量一些我们关心的物理参数。通过对太阳动力学天文台 (Solar Dynamics Observatory, SDO) 上的大气成像组件 (Atmospheric Imaging Assembly,AIA) 观测到的六个耀斑进行分析的结果表明:由于我们的观测数据具有更高的空间分辨率,我们较前人的工作探测到了更多更小、更慢的SAD,这直接导致我们得到的速度和宽度的中值小于前人工作中得到的数值,但我们结果中的物理量的分布及参数的演变仍与前人的工作有良好的一致性。我们发现,SAD的宽度、速度、寿命和数量的分布遵循对数正态分布,表明SAD的产生和太阳爆发期间的随机与不稳定过程相关。此外,我们发现运动得最快的SAD发生在近似中间的高度。每个图像中的SAD数量随时间的变化呈现出了“休息相”(the rest phase, 很少数量的SAD存在的时间段)的特征,表明产生SAD的过程是间歇性的。最后,我们的观测结果与由Rayleigh-Tayler(RT)不稳定性和 Richtmyer-Meshkov不稳定性 (RMI) 产生SAD的数值模拟结果的对比展示了很好的一致性。
其他摘要We use both the methods of numerical simulation and observation to explore the Associated Features of Coronal Mass Ejections. Based on the solar catastrophe model of Isenberg et al. (1993), we performed magnetohydrodynamics (MHD) numerical experiments to look into the disturbances caused by solar eruptions and the dynamic behavior of the current sheet (CS) between the coronal mass ejection (CME) and the associated solar flare. We conduct a statistical study of the kinetic features of supra-arcade downflows that are detected from multiple solar flares.In the work focusing on the disturbances, we find that, in addition to the phenomena shown by previous works, a new structure known as the plasma pile-up is also seen. As the disrupting magnetic structure moves outwards, a fast-mode shock is driven ahead of it. The fast-mode shock expands sidewards when propagating forward, and evolves to a crescent shape. Eventually the two ends of the crescent touch the bottom boundary and cause various types of disturbances behind the shock, including a shock echo. Associated is a plasma pile-up region produced by the plasma accumulation behind the echo. This is a brand new phenomenon that was not reported previously. Two features of the pile-up region draw our attention: first, its height from the bottom boundary is similar to that of some EUV waves, and second, its velocity is about 1/3 the velocity of the fast-mode shock along the low layer of the atmosphere, which is believed to be the location of the Moreton wave front. This suggests that the pile-up may be a source of the EUV waves as well. According to our numerical results, we also synthesize the “observed” SDO/AIA images in different wavebands. The results demonstrate that the characteristics of the EUV waves “observed”in different bands are indeed different, which is consistent with the true observational results regarding EUV waves in a certain sense. In addition, by comparing the simulation with the observation, the authors first proposed the method of confirming the echo, and further showed that the echo can be observed, confirming the “true wave” nature of the EUV waves. In the work of CME/flare CS, we note that, during the evolution, the disrupting magnetic configuration becomes asymmetric firstly in the buffer region at the bottom of the CME bubble. The Rayleigh-Taylor (RT) instability in the buffer region and the deflected motion of the plasma driven by the termination shock (TS) at the bottom of the CME bubble cause the buffer region to oscillate around the y-axis. The local oscillation propagates downward through the CS, prompting an overall CS oscillation. As the buffer region grows, the oscillation period becomes longer, increasing from about 30 s to about 16 min. Meanwhile, there is another separated oscillation with a period between 0.25 min to 1.5 min in the cusp region of the flare generated by velocity shearing. The tearing mode instability yields formations of plasmoids inside the CS. The motions of all the plasmoids observed in the experiment accelerate, which implies that the large scale CME/flare CS itself in the true eruptive event is filled with the diffusion region according the the standard theory of magnetic reconnection.In the work of statistical study of the kinetic features of supra-arcade downflows, we have developed a tracking algorithm to determine the speeds of supra-arcade downflows (SADs) and set up a system to automatically track the SADs and measure some interesting parameters. By conducting an analysis on six flares observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), we detect more smaller and slower SADs than prior work due to the higher spatial resolution of our observational data. The inclusion of these events with smaller and slower SADs directly results in lower median velocities and widths than in prior work, but the fitted distributions and evolution of the parameters still show good consistency with prior work. The observed distributions of widths, speeds, lifetimes, and numbers of SADs in each image are consistent with log-normal distributions, indicating that there are random and unstable processes responsible for generating SADs during solar eruptions. Also, we find that the fastest SADs occur at approximately the middle of the height ranges. The number of SADs in each image versus time shows that there are “rest phases” of SADs, when few SADs are seen. These findings support the idea that SADs originate from a fluid instability. We compare our results with a numerical simulation that generates SADs using a mixture of the Rayleigh-Tayler instability (RTI) and the Richtmyer-Meshkov instability (RMI), and find that the simulation generates quantities that are consistent with our observational results.
学科领域天文学 ; 太阳与太阳系 ; 太阳物理学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25791
专题太阳物理研究组
推荐引用方式
GB/T 7714
谢小妍. 日冕物质抛射的伴生现象研究[D]. 北京. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
日冕物质抛射的伴生现象研究.pdf(21813KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[谢小妍]的文章
百度学术
百度学术中相似的文章
[谢小妍]的文章
必应学术
必应学术中相似的文章
[谢小妍]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 日冕物质抛射的伴生现象研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。