Institutional Repository System Of Yunnan Observatories, CAS
Simulation Study on Scaler Mode in LHAASO-KM2A | |
Huang, Zhicheng1; Huang, Daihui1; Zhou, Xunxiu1; Zhao, Jing2; He, Huihai2; Chen, Songzhan2; Ma, Xinhua2; Liu, Dong3; Axi, Kegu1; Zhao, Bing1; Cao, Zhen4,5,6; Aharonian, F.7,8; An, Q.9,10; Axikegu11; Bai, L. X.12; Bai, Y. X.4,6; Bao, Y. W.4; Bastieri, D.4; Bi, X. J.4,5,6; Bi, Y. J.4,6; Cai, H.4,5; Cai, J. T.4; Cao, Zhe9,10; Chang, J.4,6; Chang, J. F.4,6,9; Chen, B. M.4,7; Chen, E. S.4,5,6; Chen, J.12; Chen, Liang4,5,6; Chen, Liang18; Chen, Long11; Chen, M. J.4,6; Chen, M. L.4,6,9; Chen, Q. H.11; Chen, S. H.4,5,6; Chen, S. Z.4,6; Chen, T. L.19; Chen, X. L.4,5,6; Chen, Y.13; Cheng, N.4,6; Cheng, Y. D.4,6; Cui, S. W.17; Cui, X. H.20; Cui, Y. D.21; D’Ettorre Piazzoli, B.22; Dai, B. Z.23; Dai, H. L.4,6,9; Dai, Z. G.10; Danzengluobu19; della Volpe, D.24; Dong, X. J.4,6; Duan, K. K.16; Fan, J. H.14; Fan, Y. Z.16; Fan, Z. X.4,6; Fang, J.23; Fang, K.4,6; Feng, C. F.25; Feng, L.16; Feng, S. H.4,6; Feng, Y. L.16; Gao, B.4,6; Gao, C. D.25; Gao, L. Q.4,5,6; Gao, Q.19; Gao, W.25; Ge, M. M.23; Geng, L. S.4,6; Gong, G. H.26; Gou, Q. B.4,6; Gu, M. H.4,6,9; Guo, F. L.18; Guo, J. G.4,5,6; Guo, X. L.11; Guo, Y. Q.4,6; Guo, Y. Y.4,5,6,16; Han, Y. A.27; He, H. H.4,5,6; He, H. N.16; He, J. C.4,5,6; He, S. L.14; He, X. B.21; He, Y.11; Heller, M.24; Hor, Y. K.21; Hou, C.4,6; Hu, H. B.4,5,6; Hu, S.12; Hu, S. C.4,5,6; Hu, X. J.26; Huang, D. H.11; Huang, Q. L.4,6; Huang, W. H.25; Huang, X. T.25; Huang, X. Y.16; Huang, Z. C.11; Ji, F.4,6; Ji, X. L.4,6,9; Jia, H. Y.11; Jiang, K.9,10; Jiang, Z. J.23; Jin, C.4,5,6; Ke, T.4,6; Kuleshov, D.28; Levochkin, K.28; Li, B. B.17; Li, Cheng9,10; Li, Cong4,6; Li, F.4,6,9; Li, H. B.4,6; Li, H. C.4,6; Li, H. Y.10,16; Li, J.4,6,9; Li, K.4,6; Li, W. L.25; Li, X. R.4,6; Li, Xin9,10; Li, Xin11; Li, Y.12; Li, Y. Z.4,5,6; Li, Zhe4,6; Li, Zhuo29; Liang, E. W.30; Liang, Y. F.30; Lin, S. J.21; Liu, B.10; Liu, C.4,6; Liu, D.25; Liu, H.11; Liu, H. D.27; Liu, J.4,6; Liu, J. L.31; Liu, J. S.21; Liu, J. Y.4,6; Liu, M. Y.19; Liu, R. Y.13; Liu, S. M.11; Liu, W.4,6; Liu, Y.14; Liu, Y. N.26; Liu, Z. X.12; Long, W. J.11; Lu, R.23; Lv, H. K.4,6; Ma, B. Q.29; Ma, L. L.4,6; Ma, X. H.4,6; Mao JR(毛基荣)32; Masood, A.11; Min, Z.4,6; Mitthumsiri, W.33; Montaruli, T.24; Nan, Y. C.25; Pang, B. Y.11; Pattarakijwanich, P.33; Pei, Z. Y.14; Qi, M. Y.4,6; Qi, Y. Q.17; Qiao, B. Q.4,6; Qin, J. J.10; Ruffolo, D.33; Rulev, V.28; Saiz, A.33; Shao, L.17; Shchegolev, O.28,34; Sheng, X. D.4,6; Shi, J. Y.4,6; Song, H. C.29; Stenkin, Yu. V.28,34; Stepanov, V.28; Su, Y.35; Sun, Q. N.11 | |
会议录名称 | Proceedings of Science |
2022-03-18 | |
卷号 | 395 |
DOI | 10.22323/1.395.0365 |
产权排序 | 第32完成单位 |
收录类别 | EI |
会议名称 | 37th International Cosmic Ray Conference, ICRC 2021 |
会议日期 | 2021-07-12 |
会议地点 | Virtual, Berlin, Germany |
关键词 | Scaler mode Shower mode LHAASO KM2A Monte Carlo simulations Cosmic rays |
摘要 | LHAASO, located at Daocheng in Sichuan province of China with an altitude up to 4410 m above the sea level, takes the function of hybrid technology to detect cosmic rays. As the major array of LHAASO, KM2A is composed of 5195 electromagnetic particle detectors (EDs) and 1188 muon detectors (MDs). In the ground-based experiments, there are two common independent data acquisition systems, corresponding to the scaler and shower operation modes. In order to learn more about the scaler mode in LHAASO-KM2A, we adopt the CORSIKA to study the shower development and employ the G4KM2A (based on Geant4) to simulate the detector responses. For one cluster (composed of 64 EDs) in the array of KM2A-ED, the event rates of showers having a number of fired EDs ≥ 1, 2, 3 and 4 (in a time coincidence of 100 ns) are recorded. The average rates of the four multiplicities are ∼ 88 kHz, ∼ 1.4 kHz, ∼ 210 Hz and ∼ 110 Hz, respectively. For the array of KM2A-MD, there are 16 MDs in one cluster. The average rates with multiplicities ≥ 1 and 2 are ∼ 84 kHz and ∼ 890 Hz, respectively. The corresponding primary energies are also given. According to our simulations, the energy threshold of the scaler mode can be lowered to ∼ 100 GeV. At the same time, the energy threshold of LHAASO-KM2A in shower mode is presented for comparison. The simulation results in this work are beneficial for the online trigger with scaler mode, and also be useful in understanding the experiment results in LHAASO-KM2A. © Copyright owned by the author(s). |
资助项目 | National Natural Science Foundation of China[11475141] ; National Natural Science Foundation of China[12047576] ; National Natural Science Foundation of China[U2031101] |
项目资助者 | National Natural Science Foundation of China[11475141, 12047576, U2031101] |
语种 | 英语 |
学科领域 | 天文学 ; 天体物理学 ; 高能天体物理学 ; 核科学技术 |
文章类型 | Conference article (CA) |
出版者 | Sissa Medialab Srl |
URL | 查看原文 |
EI入藏号 | 20230113325067 |
EI主题词 | Cosmic rays |
EI分类号 | 471.1 Oceanography, General - 657 Space Physics - 657.2 Extraterrestrial Physics and Stellar Phenomena - 723.2 Data Processing and Image Processing - 723.4 Artificial Intelligence - 922.2 Mathematical Statistics - 944.7 Radiation Measuring Instruments |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/25725 |
专题 | 星系类星体研究组 |
作者单位 | 1.School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China; 2.Institute of High Energy Physics, CAS, Beijing, 100049, China; 3.Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China; 4.Key Laboratory of Particle Astrophyics, Experimental Physics Division, Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; 5.University of Chinese Academy of Sciences, Beijing, 100049, China; 6.TIANFU Cosmic Ray Research Center, Sichuan, Chengdu, China; 7.Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, 2, Dublin, Ireland; 8.Max-Planck-Institut for Nuclear Physics, P.O. Box 103980, Heidelberg, 69029, Germany; 9.State Key Laboratory of Particle Detection and Electronics, China; 10.University of Science and Technology of China, Anhui, Hefei, 230026, China; 11.School of Physical Science and Technology, School of Information Science and Technology, Southwest Jiaotong University, Sichuan, Chengdu, 610031, China; 12.College of Physics, Sichuan University, Sichuan, Chengdu, 610065, China; 13.School of Astronomy and Space Science, Nanjing University, Jiangsu, Nanjing, 210023, China; 14.Center for Astrophysics, Guangzhou University, Guangdong, Guangzhou, 510006, China; 15.School of Physics and Technology, Wuhan University, Hubei, Wuhan, 430072, China; 16.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Jiangsu, Nanjing, 210023, China; 17.Hebei Normal University, Hebei, Shijiazhuang, 050024, China; 18.Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, 200030, China; 19.Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Tibet, Lhasa, 850000, China; 20.National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100101, China; 21.School of Physics and Astronomy, School of Physics (Guangzhou), Sun Yat-Sen University, Guangdong, Zhuhai, 519000, China; 22.Dipartimento di Fisica, Universit‘a di Napoli 23.School of Physics and Astronomy, Yunnan University, Yunnan, Kunming, 650091, China; 24.D’epartement de Physique Nucl’eaire et Corpusculaire, Facult’e de Sciences, Universit’e de Gen‘eve, 24 Quai Ernest Ansermet, Geneva, 1211, Switzerland; 25.Institute of Frontier and Interdisciplinary Science, Shandong University, Shandong, Qingdao, 266237, China; 26.Department of Engineering Physics, Tsinghua University, Beijing, 100084, China; 27.School of Physics and Microelectronics, Zhengzhou University, Henan, Zhengzhou, 450001, China; 28.Institute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312, Russia; 29.School of Physics, Peking University, Beijing, 100871, China; 30.School of Physical Science and Technology, Guangxi University, Guangxi, Nanning, 530004, China; 31.Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China; 32.Yunnan Observatories, Chinese Academy of Sciences, Yunnan, Kunming, 650216, China; 33.Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; 34.Moscow Institute of Physics and Technology, Moscow, 141700, Russia; 35.Key Laboratory of Radio Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Jiangsu, Nanjing, 210023, China; 36.National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China |
推荐引用方式 GB/T 7714 | Huang, Zhicheng,Huang, Daihui,Zhou, Xunxiu,et al. Simulation Study on Scaler Mode in LHAASO-KM2A[C]:Sissa Medialab Srl,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Simulation Study on (1278KB) | 会议论文 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论