Institutional Repository System Of Yunnan Observatories, CAS
The YAG Lidar System Applied in LHAASO | |
Sun, Q. N.1; Geng, L. S.2; Li, X.1; Chen, L.1; Liu, H.1; Wang, Y.1; Zhu, F. R.1; Zhang, Y.2; Cao, Zhen3,4,5; Aharonian, F.6,7; An, Q.8,9; Axikegu10; Bai, L. X.11; Bai, Y. X.3,5; Bao, Y. W.12; Bastieri, D.13; Bi, X. J.3,4,5; Bi, Y. J.3,5; Cai, H.14; Cai, J. T.13; Cao, Zhe8,9; Chang, J.15; Chang, J. F.3,5,8; Chen, B. M.16; Chen, E. S.3,4,5; Chen, J.11; Chen, Liang3,4,5; Chen, Liang17; Chen, Long10; Chen, M. J.3,5; Chen, M. L.3,5,8; Chen, Q. H.10; Chen, S. H.3,4,5; Chen, S. Z.3,5; Chen, T. L.18; Chen, X. L.3,4,5; Chen, Y.12; Cheng, N.3,5; Cheng, Y. D.3,5; Cui, S. W.16; Cui, X. H.19; Cui, Y. D.20; D’Ettorre Piazzoli, B.21; Dai, B. Z.22; Dai, H. L.3,5,8; Dai, Z. G.9; Danzengluobu18; della Volpe, D.23; Dong, X. J.3,5; Duan, K. K.15; Fan, J. H.13; Fan, Y. Z.15; Fan, Z. X.3,5; Fang, J.22; Fang, K.3,5; Feng, C. F.24; Feng, L.15; Feng, S. H.3,5; Feng, Y. L.15; Gao, B.3,5; Gao, C. D.24; Gao, L. Q.3,4,5; Gao, Q.18; Gao, W.24; Ge, M. M.22; Geng, L. S.3,5; Gong, G. H.25; Gou, Q. B.3,5; Gu, M. H.3,5,8; Guo, F. L.17; Guo, J. G.3,4,5; Guo, X. L.10; Guo, Y. Q.3,5; Guo, Y. Y.3,4,5,15; Han, Y. A.26; He, H. H.3,4,5; He, H. N.15; He, J. C.3,4,5; He, S. L.13; He, X. B.20; He, Y.10; Heller, M.23; Hor, Y. K.20; Hou, C.3,5; Hu, H. B.3,4,5; Hu, S.11; Hu, S. C.3,4,5; Hu, X. J.25; Huang, D. H.10; Huang, Q. L.3,5; Huang, W. H.24; Huang, X. T.24; Huang, X. Y.15; Huang, Z. C.10; Ji, F.3,5; Ji, X. L.3,5,8; Jia, H. Y.10; Jiang, K.8,9; Jiang, Z. J.22; Jin, C.3,4,5; Ke, T.3,5; Kuleshov, D.27; Levochkin, K.27; Li, B. B.16; Li, Cheng8,9; Li, Cong3,5; Li, F.3,5,8; Li, H. B.3,5; Li, H. C.3,5; Li, H. Y.9,15; Li, J.3,5,8; Li, K.3,5; Li, W. L.24; Li, X. R.3,5; Li, Xin8,9; Li, Xin10; Li, Y.11; Li, Y. Z.3,4,5; Li, Zhe3,5; Li, Zhuo28; Liang, E. W.29; Liang, Y. F.29; Lin, S. J.20; Liu, B.9; Liu, C.3,5; Liu, D.24; Liu, H.10; Liu, H. D.26; Liu, J.3,5; Liu, J. L.30; Liu, J. S.20; Liu, J. Y.3,5; Liu, M. Y.18; Liu, R. Y.12; Liu, S. M.10; Liu, W.3,5; Liu, Y.13; Liu, Y. N.25; Liu, Z. X.11; Long, W. J.10; Lu, R.22; Lv, H. K.3,5; Ma, B. Q.28; Ma, L. L.3,5; Ma, X. H.3,5; Mao JR(毛基荣)31; Masood, A.10; Min, Z.3,5; Mitthumsiri, W.32; Montaruli, T.23; Nan, Y. C.24; Pang, B. Y.10; Pattarakijwanich, P.32; Pei, Z. Y.13; Qi, M. Y.3,5; Qi, Y. Q.16; Qiao, B. Q.3,5; Qin, J. J.9; Ruffolo, D.32; Rulev, V.27; Sáiz, A.32; Shao, L.16; Shchegolev, O.27,33; Sheng, X. D.3,5; Shi, J. Y.3,5; Song, H. C.28; Stenkin, Yu. V.27,33; Stepanov, V.27; Su, Y.34; Sun, Q. N.10; Sun, X. N.29; Sun, Z. B.35; Tam, P. H.20 | |
会议录名称 | Proceedings of Science |
2022-03-18 | |
卷号 | 395 |
DOI | 10.22323/1.395.0272 |
产权排序 | 第31完成单位 |
收录类别 | EI |
会议名称 | 37th International Cosmic Ray Conference, ICRC 2021 |
会议日期 | 2021-07-12 |
会议地点 | Virtual, Berlin, Germany |
关键词 | YAG-Lidar system atmosphere monitoring LHAASO |
摘要 | The atmospheric quality plays an important role in the air shower observation by the Wide Field-of-view Cherenkov Telescope Array (WFCTA) of LHAASO. A YAG imaging lidar system was developed to continuously monitor the calorimetric information. The accuracy of atmospheric monitoring is dependent on the pulse energy, the YAG laser’s beam parameters and the angular repeatability of a High-precision 3D lifting Rotating Platform (HiRoP). Therefore, we designed an optical system for this lidar with a beam splitter to divide the laser beam into a reference beam and a calibrating beam with a certain ratio and coupled the beam paths with the movement of HiRoP. Thus, every pulse energy of the calibrating beam, which has the same energy fluctuation with respect to the reference beam recorded by a power meter, could be calculated by the ratio of the two beams. Great cares were also taken to characterize the beam size, polarization and divergence of the laser. Meanwhile, a high-precision home-made thermotank was designed to control the temperature and humidity to improve the performance and stability of our laser system, which resulting in a thermal fluctuation less than 2 C inside the container in the winter at an altitude of 4410 m. As a result, the pulse energy fluctuation of the laser beam for calibration was improved from 5 % to less than 2 %. As a result, we have successfully attained distinguishable full-WFCTA-view scanning Laser images in different air conditions, which could be used for the atmospheric quality analysis in further. © Copyright owned by the author(s). |
资助项目 | National Natural Science Foundation of China[11947404] ; Department of Science and Technology of Sichuan Province[2020YFSY0016] ; Department of Science and Technology of Sichuan Province[2021YFSY0031] |
项目资助者 | National Natural Science Foundation of China[11947404] ; Department of Science and Technology of Sichuan Province[2020YFSY0016,2021YFSY0031] |
语种 | 英语 |
学科领域 | 天文学 ; 天体物理学 ; 高能天体物理学 ; 核科学技术 |
文章类型 | Conference article (CA) |
出版者 | Sissa Medialab Srl |
URL | 查看原文 |
EI入藏号 | 20225113275687 |
EI主题词 | Yttrium aluminum garnet |
EI分类号 | 443.1 Atmospheric Properties - 716.2 Radar Systems and Equipment - 731.3 Specific Variables Control - 741.3 Optical Devices and Systems - 744.4 Solid State Lasers - 744.8 Laser Beam Interactions - 804.2 Inorganic Compounds |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/25689 |
专题 | 星系类星体研究组 |
作者单位 | 1.School of Physical Science and Technology School of Information Science and Technology, Southwest Jiaotong University, Sichuan, Chengdu, 610031, China; 2.Key Laboratory of Particle Astrophyics Experimental Physics Division Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; 3.Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; 4.University of Chinese Academy of Sciences, Beijing, 100049, China; 5.TIANFU Cosmic Ray Research Center, Sichuan, Chengdu, China; 6.Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, 02, Ireland; 7.Max-Planck-Institut for Nuclear Physics, P.O. Box 103980, Heidelberg, 69029, Germany; 8.State Key Laboratory of Particle Detection and Electronics, China; 9.University of Science and Technology of China, Anhui, Hefei, 230026, China; 10.School of Physical Science and Technology, School of Information Science and Technology, Southwest Jiaotong University, Sichuan, Chengdu, 610031, China; 11.College of Physics, Sichuan University, Sichuan, Chengdu, 610065, China; 12.School of Astronomy and Space Science, Nanjing University, Jiangsu, Nanjing, 210023, China; 13.Center for Astrophysics, Guangzhou University, Guangdong, Guangzhou, 510006, China; 14.School of Physics and Technology, Wuhan University, Hubei, Wuhan, 430072, China; 15.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Jiangsu, Nanjing, 210023, China; 16.Hebei Normal University, Hebei, Shijiazhuang, 050024, China; 17.Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, 200030, China; 18.Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Tibet, Lhasa, 850000, China; 19.National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100101, China; 20.School of Physics and Astronomy, School of Physics (Guangzhou), Sun Yat-sen University, Guangdong, Zhuhai, 519000, China; 21.Dipartimento di Fisica dell’Università di Napoli `‘Federico II 22.School of Physics and Astronomy, Yunnan University, Yunnan, Kunming, 650091, China; 23.D’epartement de Physique Nucl’eaire et Corpusculaire, Facult’e de Sciences, Universit’e de Gen‘eve, 24 Quai Ernest Ansermet, Geneva, 1211, Switzerland; 24.Institute of Frontier and Interdisciplinary Science, Shandong University, Shandong, Qingdao, 266237, China; 25.Department of Engineering Physics, Tsinghua University, Beijing, 100084, China; 26.School of Physics and Microelectronics, Zhengzhou University, Henan, Zhengzhou, 450001, China; 27.Institute for Nuclear Research of Russian Academy of Sciences, Moscow, 117312, Russia; 28.School of Physics, Peking University, Beijing, 100871, China; 29.School of Physical Science and Technology, Guangxi University, Guangxi, Nanning, 530004, China; 30.Tsung-Dao Lee Institute, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China; 31.Yunnan Observatories, Chinese Academy of Sciences, Yunnan, Kunming, 650216, China; 32.Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; 33.Moscow Institute of Physics and Technology, Moscow, 141700, Russia; 34.Key Laboratory of Radio Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Jiangsu, Nanjing, 210023, China; 35.National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China |
推荐引用方式 GB/T 7714 | Sun, Q. N.,Geng, L. S.,Li, X.,et al. The YAG Lidar System Applied in LHAASO[C]:Sissa Medialab Srl,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
The YAG Lidar System(3109KB) | 会议论文 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论