YNAO OpenIR  > 应用天文研究组
激光测距系统发散角调整装置的研究及设计
其他题名Research and design of divergence angle adjusting device for laser ranging system
赵闯闯
学位类型工程硕士
导师翟东升 ; 赵劲松
2021-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业光学工程
关键词离焦像差 能量密度空间分布 回波光子数 光学设计
摘要在卫星激光测距中,对不同轨道高度的目标进行测距时,调整激光光束发散角有利于提高测距系统的测距能力。目前,测距系统通常采用固定倍率的伽利略式扩束系统,通过改变两透镜间距离调整发散角,这种发散角调整方式会产生离焦像差。从定性角度看,离焦像差将影响激光光束质量和系统测距能力。为了揭示并解决该问题,本文首先研究离焦像差对测距系统测距能力的影响,通过理论分析定量的描述出两者间关系,掌握其规律。其次提出并设计一种发散角调整装置,已解决发散角调整过程中带来的离焦像差问题。 首先,高斯光束在自由空间的传输理论、光学系统对激光光束的变换作用和波像差理论等内容是研究激光光束能量密度空间分布的重要理论基础,本文对这些内容进行了归纳和总结。 其次,分析激光扩束系统对高斯光束的变换作用,得到角放大率和离焦量的关系。基于高斯光束的传播理论,得到离焦像差对光束能量密度空间分布的影响。对于不同距离的卫星,计算两种扩束系统下激光测距系统接收的回波光子数。仿真结果表明:角放大率和离焦量近似服从线性关系,离焦量变化1mm,发散角变化1µrad;离焦像差影响光束的能量密度空间分布,使光斑弥散;对于不同距离的卫星,在不同角放大率下利用调焦式扩束系统接收到的回波光子数均约为离焦式扩束系统的2倍,可有效提高目标探测成功概率。 最后,提出一种切换伽利略式望远镜中凹透镜的方法调整光束发散角,称为调焦式扩束系统。调焦式扩束系统通过切换凹透镜的方式调整发散角,设计了2倍、2.5倍和3.3倍三种扩束倍率。为满足镜片加工要求对调焦式扩束系统进行套样板,并对套样板后的调焦式扩束系统进行公差分析,确定了公差分配范围:表面半径公差±0.2mm,表面厚度公差±0.2mm,偏心公差±0.2mm,表面倾斜公差±0.2mm,元件倾斜公差±0.5°。设计的光学镜头已投入加工,通过产品调研确定了满足公差要求的电动位移台。
其他摘要In satellite laser ranging, adjusting the divergence angle of laser beam is helpful to improve the ranging ability of the ranging system when ranging targets with different orbital heights. At present, the fixed magnification Galileo beam expander is usually used in ranging system. The divergence angle is adjusted by changing the distance between two lenses, which will produce defocusing aberration. From the qualitative point of view, the defocusing aberration will affect the laser beam quality and the ranging ability of the system. In order to reveal and solve this problem, this paper first studies the influence of defocusing aberration on the ranging ability of ranging system, quantitatively describes the relationship between the two through theoretical analysis, and grasps its law. Secondly, a divergence angle adjustment device is proposed and designed to solve the defocusing aberration problem in the process of divergence angle adjustment.Firstly, the propagation algorithm of Gaussian beam in free space, the transformation of laser beam by optical system and wave aberration theory are the important theoretical basis for studying the spatial distribution of laser beam energy density, these contents are summarized in this article.Secondly, the transformation effect of laser beam expanding system on Gaussian beam is analyzed, and the relationship between angular magnification and defocus is obtained. Using the propagation theory of Gaussian beam, the influence of defocusing aberration on the spatial distribution of beam energy density is obtained. For different distance satellites, the number of echo photons received by laser ranging system under two kinds of beam expanding systems is calculated. The simulation results show that: the angular magnification and defocusing amount obey approximately linear relationship, the defocusing amount changes 1mm, the divergence angle changes 1µrad; the defocusing aberration affects the energy density distribution of the beam, so that the light spot is diffused; for satellites with different distances, the number of echo photons received by the focusing beam expander system at different angular magnification is the same as that of the defocusing beam expander system 2 times, which can effectively improve the success probability of target detection.Finally, a method of switching the concave lens of Galileo telescope to adjust the beam divergence angle is proposed, which is called focusing beam expanding system. In the focusing beam expander system, the divergence angle is adjusted by switching concave lens, and three kinds of beam expansion rates are designed, which are 2 times, 2.5 times and 3.3 times. In order to meet the requirements of lens processing, a template was set for the focusing beam expander system, and the tolerance of the focusing beam expander system after the template was set was analyzed, and the tolerance distribution range was determined: surface radius tolerance ±0.2mm, surface thickness tolerance ±0.2mm, eccentricity tolerance ±0.2mm, surface inclination tolerance ±0.2mm, component inclination tolerance ±0.5°. The optical part drawing is designed and the lens is processed. The electric displacement table meeting the requirements is determined through product research.
学科领域天文学 ; 天体测量学 ; 机械工程 ; 仪器仪表技术
学科门类理学 ; 理学::天文学 ; 工学 ; 工学::光学工程 ; 工学::仪器科学与技术
页数69
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25510
专题应用天文研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
赵闯闯. 激光测距系统发散角调整装置的研究及设计[D]. 北京. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
激光测距系统发散角调整装置的研究及设计.(7611KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[赵闯闯]的文章
百度学术
百度学术中相似的文章
[赵闯闯]的文章
必应学术
必应学术中相似的文章
[赵闯闯]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 激光测距系统发散角调整装置的研究及设计.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。