YNAO OpenIR  > 南方基地
伽玛暴及其余辉的喷流结构和辐射机制研究
其他题名Investigation of the Jet Structure and Radiation Mechanism of Gamma-Ray Bursts and Their Afterglows
程康法
学位类型博士
导师王建成 ; 赵晓红
2021-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词伽玛射线暴 磁场 偏振 辐射机制
摘要伽玛射线暴(Gamma-Ray Burst,简称‘GRB’或‘伽玛暴’)是指来自宇宙空间中任意方向的伽玛射线在短时间内突然爆发的现象。伽玛暴在数秒内释放的各向同性能量达到 ∼ 1051 − 1054 erg,它是目前为止人类发现的宇宙中最剧烈的电磁爆发现象。自从1967年美国的军事卫星Vela首次探测到来自太空的伽玛暴以来,伽玛暴已经逐渐被天文学家所了解。尤其是近年来伽玛暴领域取得了诸多突破性进展。例如,2017年8月人类首次观测到短伽玛暴 (GRB 170817A) 与双中子星并合产生的引力波暴 (GW170817) 成协,这标志着多信使天文学的诞生!GRB 170817A是一个独特的短伽玛暴,其瞬时辐射的各向同性能量仅为 Eγ,iso ∼ 6 × 1046 erg,且余辉的光变曲线具有长达 ~160天的缓慢上升段。另外,伽玛暴的偏振探测也取得较大进展,我国的伽玛暴偏振探测仪POLAR探测到一个伽玛暴样本的偏振,平均偏振度约10%,且发现GRB 170114A在单脉冲内存在偏振角演化的现象。 本论文的第一章为引言部分,第二章和第三章分别是伽玛暴的观测和理论模型介绍。第二章主要介绍伽玛暴的瞬时辐射和余辉的观测,包括伽玛暴的空间分布和爆发率,瞬时辐射和余辉阶段的观测光变曲线和观测谱。第三章介绍伽玛暴的两个主流模型,包括火球模型 (重子物质主导) 和坡印廷流主导模型,主要介绍这两种模型如何解释伽玛暴和余辉的观测。 GRB 170817A作为首个被发现与引力波成协的伽玛暴,其独特的长时间缓慢上升的余辉光变曲线难以用典型的均匀喷流模型或均匀的暴周介质来解释,因此本论文的第四和第五章的研究将致力于解决该问题。第四和第五章分别从暴周环境效应和喷流结构效应着手对该问题进行研究。我们在第四章中系统地研究了不同暴周环境及不同视角下的余辉光变曲线,采用解析近似的方法给出不同暴周环境下偏轴观测伽玛暴在各个喷流演化阶段的解析光变指数,并采用数值计算的方法给出相应的光变曲线。最后,将该模型应用到低光度伽玛暴中,对GRB 170817A等五个低光度伽玛暴余辉的光变曲线做拟合。我们发现轻微偏轴观测下能对包括GRB 170817A在内的四个低光度伽玛暴的光变曲线做出较好的拟合,但暴周环境并不完全一致。虽然GRB 170817A的余辉光变曲线可以在暴周介质分布为 n ∝ R−1.6 的环境中做出较好的拟合,但是该拟合给出的参数难以满足射电余辉图像的观测限制。即便如此,我们通过该工作认识到纯粹的暴周环境效应也可以产生长时间缓慢上升的特殊余辉光变,如果在将来观测到类似的余辉光变,我们需要考虑其可能的暴周环境起源。第五章首先介绍引力波电磁对应体GRB 170817A的余辉光变特性和其观测图像特征,并给出一些现有模型对GRB 170817A的相关解释,包括典型均匀锥形喷流模型、有能量注入的准球形模型、结构化喷流模型。然后我们采用一种分层喷流模型 (有径向结构的准直喷流) 对GRB 170817A余辉的光变数据做拟合,并根据观测给出的射电余辉的观测角尺度和流量中心的移动进一步对模型参数做出限制。 对喷流结构的研究,有助于我们揭示中心天体的性质、喷流产生机制以及伽玛暴的辐射机制等。在第五章中,我们从喷流结构效应着手解释GRB 170817A的独特余辉光变。不同于典型的均匀喷流,我们采用一种分层喷流模型 (有径向结构的准直喷流) 对GRB 170817A余辉的光变数据做出了较好的拟合,并根据观测给出的射电余辉的观测角尺度和流量中心的移动进一步对模型参数做出限制。在该分层喷流模型下,长时间缓慢上升的余辉光变起源于喷流的径向结构,而晚期余辉流量的快速下降则是起源于喷流的边缘效应。这提示我们,不仅对于GRB 170817A,如果在将来观测到类似的长时间缓慢上升且晚期余辉流量快速下降的伽玛暴,分层喷流模型应当作为一种可能的候选模型。第七章为结论与展望,主要对本论文的研究内容作简要的总结并对伽玛暴目前所面临问题的展望。 研究伽玛暴的偏振对我们了解伽玛暴的喷流结构、辐射区的磁场结构、辐射机制等有重要意义。我们在第六章中研究伽玛暴瞬时辐射的偏振,主要研究伽玛暴在不同磁场模型下的瞬时辐射偏振,包括时间分辨和时间平均的偏振。我们的计算结果显示,在典型参数下衰减磁场的时间平均偏振度(~0.6)高于常数磁场模型(~0.5)。这为我们在观测上分辨这两种磁场模型提供了契机,未来高精度的偏振探测器将可能分辨这两种模型。另外,我们还发现在环形磁场(衰减磁场)中,伽玛暴在单脉冲内会发生两次偏振角改变90度的现象,这与目前观测到的GRB 170114A和GRB 160821A的偏振角改变大体一致。但考虑到目前观测到类似偏振角改变的伽玛暴数目还很少且探测器的精度不够高等问题,目前还难以确定伽玛暴的偏振角改变是否起源于这种环形磁场模型。如果未来高精度的偏振探测器探测到更多类似的偏振角改变再综合衰减磁场下给出的类Band谱,我们将有可能确定伽玛暴辐射区的磁场结构及其辐射机制。 第七章为结论与展望,主要对本论文的研究内容作简要的总结并对当前伽玛暴领域的一些基本问题和将来探测器可能带来的进展进行展望。
其他摘要Gamma-ray burst (GRB) refers to a sudden burst of gamma rays from any direction in space in a short time. The isotropic energy released by GRBs in a few seconds can reach ∼ 1051 − 1054 erg, which is the most violent electricmagnetic explosion phenomenon in the universe discovered so far. Since 1967, the military satellite Vela of USA detected GRB from space the first, GRBs have been gradually understood by astronomers. Especially in recent years, many breakthroughs have been made in the field of GRBs. For example, in August 2017, for the first time, human beings detected the gravitational wave (GW170817) produced by the coalescence of binary neutron stars and found that it is associated with the short GRB (GRB 170817a). GRB 170817a is a unique short GRB with a low isotropic energy of Eγ,iso ∼ 6 × 1046 erg, and the light curve of the afterglow has a long slowly rising phase of ~160 days. In addition, great progress has been made in the polarization detection of GRBs. China's POLAR detected a GRB sample with low average polarization degree (~10%), and GRB 170114A was found with polarization angle evolution in a single pulse. The first chapter is foreword. The second and third chapters introduce the observation and theoretical models of GRBs. The second chapter mainly introduces the observation of prompt emission and afterglow of GRBs, including the spatial distribution and burst rate of GRBs, the observed light curve and spectrum in the prompt emission and afterglow phases, and the synchrotron radiation spectrum of the afterglow. In addition, the latest observations of very high-energy radiation from GRBs are shown in the last section of this chapter. In the second chapter, two main dynamic models of GRBs are introduced, including fireball model (dominated by baryon material) and Poynting flux dominated model. The introduction of the fireball model mainly includes the description of the model and the dynamic evolution of the fireball, as well as the characteristic radius of the fireball model. As the first GRB associated with gravitational waves, GRB 170817A's unique super-long and slowly rising afterglow light curves are difficult to be explained by the classical uniform top-hat jet model or the uniform circumburst medium. Therefore, the research of Chapter 4 and Chapter 5 of this paper will be dedicated to solve this problem. In chapter 4 and chapter 5, the circumburst environmental effect and the jet structure effect are studied respectively. We systematically study the afterglow light curves in different circumburst environment and different viewing angles in the fourth chapter. We obtain the analytical temporal indexes of off-axis observation under different circumburst environment by taking an analytical approximation, and we also give the corresponding light curves by taking the numerical calculation. Finally, the model is applied to five low luminosity GRBs to fit the afterglow data. We found that the light curves of four low luminosity GRBs, including GRB 170817A, can be well fitted under slightly off-axis observations, but the given circumburst environment is not exactly the same. Although the afterglow light curves of GRB 170817A can be well fitted in the environment with a burst medium distribution of n ∝ R−1.6, the parameters given by the fitting cannot meet the observation limits of radio afterglow images. Even so, we have learned from this work that a special afterglow light curve with a long and slowly rising phase can also be generated by a pure circumburst environmental effect. If similar afterglow light curves are observed in the future, we should consider the possible origin of the circumburst environment. The study of jet structure will help us to reveal the nature of the central engine, the mechanism of jet production and the radiation mechanism of GRBs. In Chapter 5, we explain the unique afterglow light curves of GRB 170817A from the perspective of jet structure effect. Different from the classical top-hat jet, we use a stratified jet model (collimated jet with radial structure) to fit the afterglow data of GRB 170817A, and further constrained the model parameters by the observed source size and the angular displacement of flux centroid of the radio afterglow image. In the stratified jet model, the long and slowly rising afterglow light curves are due to the radial structure of the jet, while the rapid decline of the late time afterglow flux is due to the edge effect of the jet. This suggests that not only for GRB 170817A, the stratified jet model should be considered as a possible candidate model if similar afterglow light curves are observed in other GRBs in the future. Studying the polarization of GRBs is of great significance for us to understand the jet structure, magnetic field (MF) configuration and the radiation mechanism of GRBs. In the sixth chapter, we study the polarization of GRB prompt emission, including the time-resolved and time-averaged polarization. Our calculation results show that the time-average polarization degrees of decaying MF (~0.6) is higher than that of constant MF (~0.5) under typical parameters. This provides an opportunity for us to distinguish the two magnetic models in observation. In the future, high-precision polarization detectors will be able to distinguish the two models. In addition, we also found that the polarization angle of GRBs will change by 90 degrees twice in a single pulse in the toroidal MF (decaying MF). Such a result is roughly consistent with the discovery of the PA evolution within a pulse in some bursts, such as GRB 170114A and GRB 160821A. However, considering that the current number of GRBs with similar polarization angle change is very small and the current precision of the detectors are not high enough, it is difficult to determine whether the polarization angle change of GRBs originated from the toroidal MF model. If more similar polarization angle changes are detected by high-precision polarization detectors in the future, and considering the Band-like spectrum given by the decaying MF, we may determine the MF structure and radiation mechanism of GRBs. In the seventh chapter, we summarize the research of this paper and discuss the current open questions and prospect in GRBs.
学科领域天文学 ; 天体物理学 ; 高能天体物理学 ; 星系与宇宙学
学科门类理学 ; 理学::天文学
页数133
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25506
专题南方基地
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
程康法. 伽玛暴及其余辉的喷流结构和辐射机制研究[D]. 北京. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
伽玛暴及其余辉的喷流结构和辐射机制研究.(18360KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[程康法]的文章
百度学术
百度学术中相似的文章
[程康法]的文章
必应学术
必应学术中相似的文章
[程康法]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 伽玛暴及其余辉的喷流结构和辐射机制研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。