YNAO OpenIR  > 大样本恒星演化研究组
吸积白矮星及其相关天体研究
其他题名Accreting white dwarfs and the related objects
吴程远
学位类型博士
导师王博
2019-07-01
学位授予单位中国科学院大学
学位授予地点北京
培养单位中国科学院云南天文台
学位专业天体物理
关键词恒星 演化 密近双星 超新星 白矮星
摘要吸积白矮星是一类处于密近双星系统中从伴星吸积物质的白矮星。白矮星吸积物质在恒星演化领域中扮演着重要的角色,它是双星演化和吸积物理中重要的研究对象,与许多天体的形成和物理过程密切相关,例如,超新星、激变变星、共生星、毫秒脉冲双星、超软X射线源、引力波源等。然而,目前对吸积白矮星的演化尚有许多不清楚的地方,比如物质转移到白矮星表面后的积累与损失过程,吸积的物质在白矮星表面燃烧情况以及白矮星最终命运等。本论文详细介绍了吸积白矮星的研究背景及意义,并系统地介绍了与吸积白矮星密切相关的两类重要天体,即Ia型超新星和吸积致塌缩型超新星。我们在吸积白矮星的演化方面做了一系列工作:系统性研究了双碳氧白矮星并合过程,发现吸积物质的速率决定双白矮并合最终的演化结局;系统性研究了碳氧白矮星偏离中心碳燃烧过程,发现碳氧白矮星经历这一过程后会演化为氧硅白矮星,将发生铁核塌缩型超新星;系统性研究了氦新星爆发过程,给出了不同吸积率下白矮星的质量积累效率、爆发间隔等参数,这些结果可以为大样本恒星演化做初始输入;系统性研究了吸积氧氖白矮星的长时标演化,发现氧氖白矮星的演化结局是唯一的,即经历电子俘获过程塌缩为中子星。取得的研究结果具体如下:(1)研究了双碳氧白矮星并合过程,发现并合过程中的吸积率对其最终的演化结局起到决定性作用(形成Ia型超新星或塌缩为中子星)。双简并星模型是两种主流的Ia型超新星前身星模型之一,同时也是引力波源。然而,前人的模拟显示双白矮星并合很可能通过电子俘获塌缩为中子星,因此双白矮星并合的结局一直存在争议。我们通过研究发现双白矮星并合过程中白矮星的吸积率决定了并合的演化结局。双白矮星并合在一定条件下将产生Ia型超新星。随着吸积率的升高,双白矮星并合将产生氧硅核(将诞生铁核塌缩型超新星)、氧氖核(将诞生电子俘获型超新星)、偏离中心氧/氖点燃(将诞生类似Ia型超新星的热核爆炸,为一类特殊的Ia型超新星)。该工作表明双白矮星并合的结局具有多样性,有一定的参数空间可以形成Ia型超新星。(2)模拟了碳氧白矮星偏离中心碳燃烧过程,发现碳氧白矮星经历这一过程后会演化为氧硅白矮星,将发生铁核塌缩型超新星。碳氧白矮星+氦星模型通常用来解释星系中年轻Ia型超新星的形成。近年来研究发现,当碳氧白矮星吸积富氦物质的吸积率超过临界吸积率时,白矮星表面会先于中心被点燃,发生偏离中心碳燃烧。人们通常假设偏离中心碳燃烧会将整个碳氧白矮星烧成一颗氧氖白矮星,并经历电子俘获致塌缩过程形成中子星。我们发现当偏离中心碳燃烧发生后,向内传播的碳燃烧火焰温度极高以至于氖元素刚一出现就被燃烧成为硅族元素。随着火焰不断地向内传播,整个碳氧白矮星被燃烧成为氧硅核,最终形成氧硅白矮星(将发生铁核塌缩超新星形成中子星),而非传统的观点,即形成氧氖白矮星并经历电子俘获超新星爆炸。这一结果暗示了宇宙中存在氧硅白矮星,并增加了星系中铁核塌缩型超新星的诞生率。此外,我们还发现,如果吸积率在临界吸积率以下,白矮星可以增加质量达到钱德拉塞卡极限并在核心处发生爆炸式碳燃烧,进而诞生Ia型超新星。(3)模拟了氦新星爆发过程,给出了不同吸积率下白矮星的质量积累效率、新星爆发间隔等参数,还发现氦新星爆发能够产生Ia型超新星。得到的结果可以为大样本恒星演化提供初始输入。氦新星爆发是白矮星吸积富氦物质不稳定燃烧所产生的闪耀现象,它与Ia型超新星、激变变星、超软X射线源的形成密切相关。然而,人们对氦闪耀过程还不完全清楚,这将直接影响人们对双星演化、超新星以及极端物理过程等相关领域的理解。我们模拟了不同吸积率下碳氧白矮星的氦新星爆发过程,得到了氦新星爆发的质量积累效率、爆发周期等参数。发现碳氧白矮星可以通过连续的新星爆发过程积累质量,最终爆炸成为Ia型超新星。基于得到的白矮星质量积累效率,我们还系统性研究了碳氧白矮星+氦星模型,发现该模型可以解释短延迟时标Ia型超新星的形成。(4)模拟了氧氖白矮星吸积物质的长时标演化,发现氧氖白矮星的演化结局是唯一的,即经历电子俘获过程塌缩为中子星。一般认为$8-10{M}_\odot$的主序星会演化为氧氖白矮星,而氧氖白矮星是吸积致塌缩的前身星。双星系统中氧氖白矮星从伴星吸积物质增加质量接近钱德拉塞卡质量极限时,白矮星核心区域会发生电子俘获过程,从而降低白矮星电子简并压,最终发生核塌缩。然而,最近一些研究表明,氧氖白矮星也可能发生爆炸式氖燃烧,产生热核爆炸型超新星。我们模拟了不同吸积率下氧氖白矮星吸积物质的长时标演化,发现电子俘获过程所释放的热量不足以弥补中微子损失所带走的热量,从而无法发生爆炸式氖燃烧过程。因此,氧氖白矮星的演化结局是唯一的,即塌缩为中子星。
其他摘要Accreting white dwarfs is a class of white dwarfs that accretes material from their companion stars in binary systems. The mass-accreting white dwarfs play an important role in the study of stellar evolution, usually relating to some objects or astrophysical processes, such as, supernovae, cataclysmic variable, symbiotic stars, millisecond pulsars, supersoft X-ray sources, gravitational wave sources, etc. However, researches on the evolution of mass-accreting white dwarfs still remain uncertain, such as the mass-accumulation and mass-loss processes, the burning conditions of accreted material and the final fates of the white dwarfs.In this thesis, we introduced the backgrounds and significances of mass-accreting white dwarfs, especially for two of the related objects: type Ia supernovae and accretion-induced-collapse supernovae. We conducted a series of investigations on the evolution of mass-accreting white dwarfs. We systematically investigated the process of double white dwarf mergers, and found that the evolutionary outcomes of the white dwarfs are determined by mass-accretion rate during the merger process. We systematically investigated the process of off-center carbon burning in helium-accreting carbon-oxygen white dwarf, and found that the white dwarf can evolve to an oxygen-silicon core and then collapse to a neutron star. We systematically investigated the process of helium-novae outbursts, and the obtained parameters can provide the initial input physics for the binary population synthesis studies. We systematically investigated the long-term evolution of oxygen-neon white dwarf accreting material, and found that the final outcome of accreting oxygen-neon white dwarf is to collapse into neutron star through the process of e-capture. Our results are provided as follows:(1) We investigated the process of double carbon-oxygen white dwarf mergers, and found that the evolutionary outcomes of the white dwarfs are determined by mass-accretion rate during the merger process. The double degenerate model is not only a popular progenitor model of type Ia supernova, but also a source of gravitational wave. However, previous studies suggested that the outcome of the WD may be collapsing to a neutron star through the e-capture supernova explosion. Hence, the final outcomes of double WD mergers still remain uncertain. We found that the final outcomes of double white dwarfs depend on the mass-accretion rate. As the mass-accretion rate increases, the outcomes can be type Ia supernovae, oxygen-silicon white dwarfs (subsequently evolves to an iron-core-collapse supernova), oxygen-neon white dwarf (subsequently evolves to an e-capture supernova), or off-center oxygen/neon ignition (subsequently evolves to a particular kind of thermonuclear supernovae). This study indicates the diversity of outcomes of double WD mergers, and there also exists a parameter space which can produce type Ia supernovae.(2) We simulated the process of off-center carbon burning in helium-accreting carbon-oxygen white dwarf, and found that the white dwarf can evolve to an oxygen-silicon core and then collapse to a neutron star. Generally, CO WD+He star systems tend to explain the formations of young type Ia supernovae in galaxies. Recent studies suggested that the white dwarf may ignite its carbon on the surface rather than in its center if the mass-accretion rate is higher than a critical value. Previous works usually assumed that the off-center carbon flame would transform the white dwarf into an oxygen-neon core, and then the hot core would undergo e-capture process to form a neutron star. We found that the temperature of inwardly propagating carbon flame is extremly high, resulting in that neon is transformed into silicon once it appears. As the carbon flame propagates inwardly, the CO WD will be burned into an oxygen-silicon core, and finally forms an OSi WD (subsequently evolves to an iron-core-collapse supernova), rather than the traditional point of view (to form a oxygen-neon white dwarf and then experiences e-capture supernova). Our results implied the existence of oxygen-silicon in the Unverise and the increase of birthrates of iron-core-collapse supernovae. Moreover, we found that the white dwarf can increase in mass to the Chandrasekhar mass limit and explode as a type Iasupernova if the mass-accretion rate is below the critical mass-accretion rate.(3) We simulated the process of helium-novae and obtained parameters of the mass-retention efficiencies and nova outburst durations of the white dwarfs with different mass-accretion rates. We also found that the helium novae can produce type Ia supernovae. The present results can provide the initial input physics for the binary population synthesis studies. Helium nova is a flash phenomenon that is originate from the unstable helium burning on the surface of white dwarf. Helium novae are relate to some objects like supersoft X-ray source, cataclysmic variable, type Ia supernova, etc. However, the mass-retention efficiencies during He nova outbursts are still uncertain, which may have influence on the studies of binary evolutions, supernovae and physical processes under extreme conditions. By simulating the He nova outbursts, we obtained the mass-retention efficiencies and nova cycle durations, and found that the carbon-oxygen white dwarfs can increase in mass to the Chandrasekhar mass limit and explode as type Ia supernovae due to the successive helium outbursts. Based on the new results of mass-retention efficiencies, we investigated the carbon-oxygen white dwarfs + helium stars model, and found that this model can explain the type Ia supernovae with short delay times.(4) We simulated the long-term evolution of oxygen-neon white dwarf accreting material, and found that the final outcome of accreting oxygen-neon white dwarf is to collapse into neutron star through the process of e-capture. Generally speaking, oxygen-neon white dwarfs are orginate from the evolutions of $8-10\,{M}_\odot$ main sequence stars. Previous studies suggested that the oxygen-neon white dwarf would collapse into neutron star through the e-capture supernova when the oxygen-neon white dwarf increases in mass to the Chandrasekhar mass limit in binary system. However, some recent studies argued that the oxygen-neon white dwarfs may undergo explosive neon burning to form a thermonuclear runaway supernova. We simlated the long-term evolutions of mass-accreting oxygen-neon white dwarfs with different mass-accretion rates, and found that thermal energy released by the electron-capture process cannot keep balance with the neutrino energy loss when it increases in mass to the Chandrasekhar mass limit, which cannot trigger the explosive neon burning. Our results indicates that the final outcome of mass-accretion oxygen-neon white dwarfs is to form neutron stars through electron-capture supernovae.
学科领域天文学 ; 恒星与银河系 ; 恒星形成与演化
学科门类理学 ; 理学::天文学
页数116
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25450
专题大样本恒星演化研究组
推荐引用方式
GB/T 7714
吴程远. 吸积白矮星及其相关天体研究[D]. 北京. 中国科学院大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
吸积白矮星及其相关天体研究.pdf(4323KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[吴程远]的文章
百度学术
百度学术中相似的文章
[吴程远]的文章
必应学术
必应学术中相似的文章
[吴程远]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 吸积白矮星及其相关天体研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。