YNAO OpenIR  > 大样本恒星演化研究组
行星与恒星之间的相互作用研究
其他题名The interaction between planet and its host star
贾石
学位类型博士
导师韩占文
2019
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词行星-恒星相互作用 洛希瓣 内旋 形变 瓦解
摘要太阳系外行星的探测和研究是目前国际上最为前沿和热门的课题之一。在过去的二十多年,人类发现了大量的太阳系外行星。然而,行星形成和演化的过程目前并不清楚,甚至对系外行星的一些观测结果超出了现有的行星形成和演化理论所能预测的范围。 在本论文中,通过研究行星充满洛希瓣后与其主星发生物质转移的过程,我们建立了物质转移过程中行星-恒星系统的角动量演化模型。同时,我们通过研究行星在其主星内部内旋的运动过程,建立了行星内旋过程中的行星形变模型和瓦解模型。我们的研究给出了行星演化的几种结局,为进一步研究行星的演化以及给出行星演化的观测特征和对其主星性质的影响提供了重要的基础。主要研究结果如下: (1)研究了行星-恒星系统物质转移过程的动力学不稳定性,系统地分析了行星-恒星系统的结构以及恒星的结构对行星-恒星系统在物质转移过程中系统角动量的影响,从而建立了更适用于行星-(类太阳)恒星系统转移物质过程中的角动量演化模型,即“最小假设”模型。我们研究发现行星的轨道角动量太小以至于并不能对其主星的转动产生较大的影响,在行星充满洛希瓣后,其损失的物质所携带的大部分角动量会在物质转移过程中被其主星吸收。我们的“最小假设”模型为进一步深入研究行星-恒星系统的物质转移过程提供了重要的理论基础。 (2)基于“最小假设”模型,我们给出了行星充满洛希瓣后发生动力学不稳定物质转移的参数空间。我们发现当气态巨行星在一定的质量和熵值范围内时,会与其(类太阳)主星发生动力学不稳定的物质转移;当岩质行星的初始质量在1 ME < MP < 10 ME(ME为地球质量)范围内时,物质转移过程的初始阶段是动力学不稳定的;当岩质行星质量减少到一个地球质量(1 ME)时,物质转移开始转向动力学稳定。我们的模型有效地增加了在观测上发现正在快速向其主星转移物质的行星的可能性。 (3)研究了行星在其(类太阳)主星内部运动过程中的形变和瓦解,系统地分析了行星在内旋过程中可能经历的过程:压缩,吸积物质和消融,从而建立了行星在内旋过程中的形变和瓦解模型,并模拟了行星的内旋和形变过程。我们得到:在行星的内旋过程中,消融过程(缓慢地剥离行星表面的物质)并不会导致行星物质的大量损失,行星倾向于以整体形变(分裂)的方式瓦解;行星在内旋过程中会受到恒星物质的冲击,行星被压缩变形成一个扁平的形状,使得行星变得致密并且增加了行星的引力结合能,从而延迟了行星的瓦解。行星在其主星内部内旋至瓦解的时标与行星初始进入其主星内部时的轨道周期(约104秒)在一个量级上;取决于行星的物质组成成分和质量,一些行星在进入其主星内部以后,会穿过主星的对流区在其主星内部的辐射区域瓦解,并不会引起主星对流区金属丰度地增加。我们的研究结果表明,吞噬掉行星的恒星并不一定能在观测上显示出其表面金属增丰的效应。 (4)给出了行星在其主星内部瓦解的位置,研究了行星在其(类太阳)主星的对流区瓦解后行星碎片的演化结局。研究发现行星在其主星对流区瓦解后的碎片并不会立即与周围的恒星物质混合,而是下沉到恒星的辐射区域;行星碎片下沉的时标与行星的轨道周期在一个量级上。因此,即使(类太阳)恒星吞噬掉的行星在其主星对流区内瓦解,也不会使其主星表面显示出金属增丰的效应,而是会增加主星内部辐射区的金属丰度。根据我们的研究得到,如果在太阳的前主序阶段有质量足够大的岩质或铁质行星内旋进入了太阳内部,那么太阳辐射区的金属丰度会被有效地增加。这为日震学观测结果和太阳内部模型之间的差异提供了一种解释。
其他摘要The detection and research of exoplanets is one of the most forward and the hottest topics in the world. The observational data of exoplanets increased enormously over the last two decades. However, the formation and evolution of exoplanets are still unclear. Many observational findings on exoplanets even are beyond the predictions by the current formation and evolution theory of exoplanets. In this thesis, by studying the mass transfer process of a Roche-lobe filling planet and its host star, we have established an angular momentum evolution model for the mass transfer process of a planet-star system. Additionally, we have developed a distortion model with investigating the deformation and disruption of a planet spiraling into its host star. Several possible evolutionary fates of planets are presented here. Our results are expected to play a key role in further study and predicting the observational properties of planetary evolution. Moreover, our studies provide important theoretical predictions for the effect of planet engulfment on the properties of its host star. The main results are summarized as follows: (1) We have investigated the mass transfer from a planet to its host star, with emphasis on the conditions under which Roche lobe overflow becomes dynamically unstable. We also have systematically analyzed the effect of the planet-star system structure and stellar structure on the angular momentum evolution during the mass transfer process. We find that the orbital angular momentum of a planet is too small to affect the rotation of its (main sequence) host star. This leads to that most of the angular momentum of the mass-transferring material from the Roche-lobe filling planet is accreted by its host star. We have built an improved model of the evolution of (planet-star) system angular momentum for the case of mass transfer from a Roche lobe filling planet to a main sequence (or larger) star, which is called as the 'minimal assumption' model. Our model is expected to be an important theoretical basis for studying the mass transfer process of a planet-star system. (2) Based on the 'minimal assumption' model, we explored the conditions for dynamically unstable Roche lobe overflow as a function of planetary mass and mass and radius of host star and equation of state of planet. It is found that gas giant planets in a range of mass and entropy can undergo dynamically unstable mass transfer (in a Sun-like host star case). Dynamical mass transfer of rocky planets depends somewhat sensitively on the equation of state used. Silicate planets in the range 1 ME < MP < 10 ME (ME is Earth mass) typically go through a phase of dynamically unstable mass transfer before settling to slow overflow when their mass drops to less than 1 ME. The higher likelihood of dynamically unstable Roche lobe overflow in our model significantly increases the possibility of discovering a planet during the process of rapid mass transfer. (3) We have investigated the processes leading to the deformation and destruction of the planet which spirals into the convective envelope of its host star. We also have systematically analyzed the possible physical processes during the spiral-in process of the planet: the compression, accretion and ablation. We have developed the distortion and disruption model, and then simulated the planetary trajectories and distorted shapes during the spiral-in processes of several kinds of planets. We find that the process of ablation (slow peeling of the surface) is ineffective and the actual disruption of the planet is likely to take place in the form of a global deformation (splitting) rather than by ablation during its spiral-in process. Before disruption of the planet, it is compressed by the ram pressure and deformed into a flattened shape. The compression increases the planetary density and its gravitational binding energy, delaying the disruption of the planet. The timescale of spiral-in process of the planet is of the order of the planetary initial orbital period (about 104 s). For some combinations of mass and composition, a planet can survive its path through the entire convective envelope and disrupt finally in the radiative interior. In this way, planets can increase the metallicity in the interior rather than the convective envelope. Our results show that planet engulfment may not exhibit the observational metal- rich properties of the surface of host stars. (4) We have estimated the depths of disruption of rocky (iron) planets by ram pressure, and have analyzed the subsequent fragmentation evolution of the planetary remnants. We find that instead of quickly mixing through the convection zone, the debris of rocky or iron planets sink below the base of the convection zone. The sinking timescale is of the order of a few orbital periods of the planet. Therefore, the planet is engulfed by its host star and is disrupted in the stellar convection zone, although the metallicity of stellar interior will be enhanced by planetary material and the metal enhancement will not be seen on the surface of its host star. Our results show that a sufficient mass of rocky and/or iron planet(s) polluting the interior of the Sun may provide an explanation for the current discrepancy between helioseismic evidence and the solar interior models.
学科领域天文学 ; 恒星与银河系 ; 恒星形成与演化
学科门类理学 ; 理学::天文学
页数110
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/25393
专题大样本恒星演化研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
贾石. 行星与恒星之间的相互作用研究[D]. 北京. 中国科学院大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
行星与恒星之间的相互作用研究.pdf(22145KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[贾石]的文章
百度学术
百度学术中相似的文章
[贾石]的文章
必应学术
必应学术中相似的文章
[贾石]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 行星与恒星之间的相互作用研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。