Institutional Repository System Of Yunnan Observatories, CAS
Automatic classification of mesoscale auroral forms using convolutional neural networks | |
Guo, Z.-X.1,2; Yang, J.-Y.1,2,3; Dunlop, M. W.1,2,4; Cao, J.-B.1,2; Li, L.-Y.1,2; Ma, Y.-D.1,2; Ji KF(季凯帆)5; Xiong, C.6; Li, J.1,2; Ding, W.-T.7 | |
发表期刊 | Journal of Atmospheric and Solar-Terrestrial Physics |
2022-09-01 | |
卷号 | 235 |
DOI | 10.1016/j.jastp.2022.105906 |
产权排序 | 第5完成单位 |
收录类别 | SCI ; EI |
摘要 | Convolutional neural networks (CNNs) in deep learning enable the extraction of features in image data. Through the multi-layer superposition of a convolutional neural network, we can better capture the essential characteristics of different auroral subclasses and further classify auroral images in detail. Because the auroral morphological features often present abstract characteristics, our study compares different CNN architectures and different layering in order to test the best neural network model for mesoscale aurora classification. Although the classification models and subclasses used by us are both more complex, the highest F1 score of aurora classification of the test set reaches 99.6% (ResNet-50), which performs best comparing with previous works. Our classification models work also quite well when applied to an independent auroral image sequence, declaring our approach can automatically select images of various mesoscale auroral forms using CNNs, and allow the time sequence of auroral evolution to be seen automatically through the mesoscale auroral feature recognitions. |
资助项目 | National Natural Science Foundation of China (NSFC)[41821003] ; National Natural Science Foundation of China (NSFC)[41874193] ; National Natural Science Foundation of China (NSFC)[41431071] ; NERC Highlight Topic SWIGS[NE/P016863/1] ; STFC[ST/M001083/1] ; STFC |
项目资助者 | National Natural Science Foundation of China (NSFC)[41821003, 41874193, 41431071] ; NERC Highlight Topic SWIGS[NE/P016863/1] ; STFC[ST/M001083/1] ; STFC |
语种 | 英语 |
学科领域 | 计算机科学技术 ; 人工智能 ; 计算机应用 |
文章类型 | Article |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
出版地 | THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND |
ISSN | 1364-6826 |
URL | 查看原文 |
WOS记录号 | WOS:000809900600006 |
WOS研究方向 | Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences |
WOS类目 | Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences |
关键词[WOS] | POLEWARD BOUNDARY ; INTENSIFICATIONS |
EI入藏号 | 20222212185653 |
EI主题词 | Convolutional neural networks |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering - 716.1 Information Theory and Signal Processing - 903.1 Information Sources and Analysis |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/25212 |
专题 | 天文技术实验室 |
通讯作者 | Yang, J.-Y. |
作者单位 | 1.Space Science Institute, School of Space and Environment, Beihang University, Beijing, 100191, China; 2.Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, China; 3.State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China; 4.RAL_Space, STFC, Chilton, Oxfordshire, OX11 0QX, United Kingdom; 5.Yunnan Observatory of Chinese Academy of Science, Yunnan, 650216, China; 6.Department of Space Physics, Electronic Information School, Wuhan University, Wuhan, 430072, China; 7.Sinosteel Tendering Co., LTD, No. 8, Haidian Street, Haidian District, Beijing, China |
推荐引用方式 GB/T 7714 | Guo, Z.-X.,Yang, J.-Y.,Dunlop, M. W.,et al. Automatic classification of mesoscale auroral forms using convolutional neural networks[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2022,235. |
APA | Guo, Z.-X..,Yang, J.-Y..,Dunlop, M. W..,Cao, J.-B..,Li, L.-Y..,...&Ding, W.-T..(2022).Automatic classification of mesoscale auroral forms using convolutional neural networks.Journal of Atmospheric and Solar-Terrestrial Physics,235. |
MLA | Guo, Z.-X.,et al."Automatic classification of mesoscale auroral forms using convolutional neural networks".Journal of Atmospheric and Solar-Terrestrial Physics 235(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Automatic classifica(4131KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论