A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation | |
Yuan, Zunli1,2; Zhang, Xibin3; Wang JC(王建成)4,5,6; Cheng XM(程向明)4,5,6; Wang, Wenjie1,2 | |
发表期刊 | ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES |
2022-05-01 | |
卷号 | 260期号:1 |
DOI | 10.3847/1538-4365/ac596a |
产权排序 | 第4完成单位 |
收录类别 | SCI |
摘要 | We propose a generalization of our previous kernel density estimation (KDE) method for estimating luminosity functions (LFs). This new upgrade further extends the application scope of our KDE method, making it a very flexible approach that is suitable to deal with most bivariate LF calculation problems. From the mathematical point of view, usually the LF calculation can be abstracted as a density estimation problem in the bounded domain of {Z(1) < z < Z(2), L > f(lim) (z)} . We use the transformation-reflection KDE method ((phi) over cap (1)) to solve the problem, and introduce an approximate method ( 1 ) based on one-dimensional KDE to deal with the small sample size case. In practical applications, the different versions of LF estimators can be flexibly chosen according to the Kolmogorov-Smirnov test criterion. Based on 200 simulated samples, we find that for both cases of dividing or not dividing redshift bins, especially for the latter, our method performs significantly better than the traditional binning method (phi) over cap (bin). Moreover, with the increase of sample size n, our LF estimator converges to the true LF remarkably faster than (phi) over cap (bin). To implement our method, we have developed a public, open-source Python toolkit, called kdeLF. With the support of kdeLF, our KDE method is expected to be a competitive alternative to existing nonparametric estimators, due to its high accuracy and excellent stability. kdeLF is available online at GitHub with further extensive documentation available. |
资助项目 | National Natural Science Foundation of China[12073069] ; Yunnan Natural Science Foundation[2019FB008] ; Yunnan Natural Science Foundation[2019FB009] ; China Manned Space Project[CMSCSST-2021-A11] ; China Manned Space Project[CMS-CSST-2021-B10] ; Xiaoxiang Scholars Programme of Hunan Normal University |
项目资助者 | National Natural Science Foundation of China[12073069] ; Yunnan Natural Science Foundation[2019FB008, 2019FB009] ; China Manned Space Project[CMSCSST-2021-A11, CMS-CSST-2021-B10] ; Xiaoxiang Scholars Programme of Hunan Normal University |
语种 | 英语 |
学科领域 | 天文学 ; 天体物理学 ; 高能天体物理学 |
文章类型 | Article |
出版者 | IOP Publishing Ltd |
出版地 | TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND |
ISSN | 0067-0049 |
URL | 查看原文 |
WOS记录号 | WOS:000790555900001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | NONPARAMETRIC-ESTIMATION ; COSMIC REIONIZATION ; RADIO-SOURCES ; BRIGHT END ; EVOLUTION ; REDSHIFT ; QUASARS ; AGN ; GALAXIES ; SAMPLES |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/25109 |
专题 | 高能天体物理研究组 天体测量技术及应用研究组 中国科学院天体结构与演化重点实验室 |
通讯作者 | Yuan, Zunli |
作者单位 | 1.Department of Physics, School of Physics and Electronics, Hunan Normal University, Changsha 410081, People's Republic of China; [email protected]; 2.Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, People's Republic of China; 3.Department of Econometrics and Business Statistics, Monash University, Australia; [email protected]; 4.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People's Republic of China; 5.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, People's Republic of China; 6.University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China |
推荐引用方式 GB/T 7714 | Yuan, Zunli,Zhang, Xibin,Wang JC,et al. A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation[J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,2022,260(1). |
APA | Yuan, Zunli,Zhang, Xibin,Wang JC,Cheng XM,&Wang, Wenjie.(2022).A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation.ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,260(1). |
MLA | Yuan, Zunli,et al."A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation".ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 260.1(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A Flexible Method fo(2258KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论