YNAO OpenIR  > 高能天体物理研究组
A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation
Yuan, Zunli1,2; Zhang, Xibin3; Wang JC(王建成)4,5,6; Cheng XM(程向明)4,5,6; Wang, Wenjie1,2
发表期刊ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
2022-05-01
卷号260期号:1
DOI10.3847/1538-4365/ac596a
产权排序第4完成单位
收录类别SCI
摘要

We propose a generalization of our previous kernel density estimation (KDE) method for estimating luminosity functions (LFs). This new upgrade further extends the application scope of our KDE method, making it a very flexible approach that is suitable to deal with most bivariate LF calculation problems. From the mathematical point of view, usually the LF calculation can be abstracted as a density estimation problem in the bounded domain of {Z(1) < z < Z(2), L > f(lim) (z)} . We use the transformation-reflection KDE method ((phi) over cap (1)) to solve the problem, and introduce an approximate method ( 1 ) based on one-dimensional KDE to deal with the small sample size case. In practical applications, the different versions of LF estimators can be flexibly chosen according to the Kolmogorov-Smirnov test criterion. Based on 200 simulated samples, we find that for both cases of dividing or not dividing redshift bins, especially for the latter, our method performs significantly better than the traditional binning method (phi) over cap (bin). Moreover, with the increase of sample size n, our LF estimator converges to the true LF remarkably faster than (phi) over cap (bin). To implement our method, we have developed a public, open-source Python toolkit, called kdeLF. With the support of kdeLF, our KDE method is expected to be a competitive alternative to existing nonparametric estimators, due to its high accuracy and excellent stability. kdeLF is available online at GitHub with further extensive documentation available.

资助项目National Natural Science Foundation of China[12073069] ; Yunnan Natural Science Foundation[2019FB008] ; Yunnan Natural Science Foundation[2019FB009] ; China Manned Space Project[CMSCSST-2021-A11] ; China Manned Space Project[CMS-CSST-2021-B10] ; Xiaoxiang Scholars Programme of Hunan Normal University
项目资助者National Natural Science Foundation of China[12073069] ; Yunnan Natural Science Foundation[2019FB008, 2019FB009] ; China Manned Space Project[CMSCSST-2021-A11, CMS-CSST-2021-B10] ; Xiaoxiang Scholars Programme of Hunan Normal University
语种英语
学科领域天文学 ; 天体物理学 ; 高能天体物理学
文章类型Article
出版者IOP Publishing Ltd
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0067-0049
URL查看原文
WOS记录号WOS:000790555900001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]NONPARAMETRIC-ESTIMATION ; COSMIC REIONIZATION ; RADIO-SOURCES ; BRIGHT END ; EVOLUTION ; REDSHIFT ; QUASARS ; AGN ; GALAXIES ; SAMPLES
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/25109
专题高能天体物理研究组
天体测量技术及应用研究组
中国科学院天体结构与演化重点实验室
通讯作者Yuan, Zunli
作者单位1.Department of Physics, School of Physics and Electronics, Hunan Normal University, Changsha 410081, People's Republic of China; [email protected];
2.Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410081, People's Republic of China;
3.Department of Econometrics and Business Statistics, Monash University, Australia; [email protected];
4.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People's Republic of China;
5.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, People's Republic of China;
6.University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
推荐引用方式
GB/T 7714
Yuan, Zunli,Zhang, Xibin,Wang JC,et al. A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation[J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,2022,260(1).
APA Yuan, Zunli,Zhang, Xibin,Wang JC,Cheng XM,&Wang, Wenjie.(2022).A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation.ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,260(1).
MLA Yuan, Zunli,et al."A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation".ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 260.1(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Flexible Method fo(2258KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Zunli]的文章
[Zhang, Xibin]的文章
[Wang JC(王建成)]的文章
百度学术
百度学术中相似的文章
[Yuan, Zunli]的文章
[Zhang, Xibin]的文章
[Wang JC(王建成)]的文章
必应学术
必应学术中相似的文章
[Yuan, Zunli]的文章
[Zhang, Xibin]的文章
[Wang JC(王建成)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A Flexible Method for Estimating Luminosity Functions via Kernel Density Estimation. II. Generalization and Python Implementation.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。