YNAO OpenIR  > 抚仙湖太阳观测和研究基地
Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method
Zhang, Wanting1,2; Zhao, Xinhua1,3,4; Feng, Xueshang1; Liu, Cheng’ao5; Xiang NB(向南彬)6; Li, Zheng7; Lu, Wei1,2
发表期刊UNIVERSE
2022-01
卷号8期号:1
DOI10.3390/universe8010030
产权排序第6完成单位
收录类别SCI
关键词solar radio flux time series forecast long short-term memory
摘要As an important index of solar activity, the 10.7-cm solar radio flux (F-10.7) can indicate changes in the solar EUV radiation, which plays an important role in the relationship between the Sun and the Earth. Therefore, it is valuable to study and forecast F-10.7. In this study, the long short-term memory (LSTM) method in machine learning is used to predict the daily value of F-10.7. The F-10.7 series from 1947 to 2019 are used. Among them, the data during 1947-1995 are adopted as the training dataset, and the data during 1996-2019 (solar cycles 23 and 24) are adopted as the test dataset. The fourfold cross validation method is used to group the training set for multiple validations. We find that the root mean square error (RMSE) of the prediction results is only 6.20~6.35 sfu, and the correlation coefficient (R) is as high as 0.9883~0.9889. The overall prediction accuracy of the LSTM method is equivalent to those of the widely used autoregressive (AR) and backpropagation neural network (BP) models. Especially for 2-day and 3-day forecasts, the LSTM model is slightly better. All this demonstrates the potentiality of the LSTM method in the real-time forecasting of F-10.7 in future.
资助项目N/A
项目资助者N/A
语种英语
学科领域天文学 ; 射电天文学 ; 射电天文方法 ; 太阳与太阳系
文章类型Article
出版者MDPI
出版地ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
URL查看原文
WOS记录号WOS:000757157500001
WOS研究方向Astronomy & Astrophysics ; Physics
WOS类目Astronomy & Astrophysics ; Physics, Particles & Fields
关键词[WOS]CM ; F10.7
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/24907
专题抚仙湖太阳观测和研究基地
作者单位1.State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
2.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3.Yading Space Weather Science Center, Daocheng 627750, China;
4.CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100101, China;
5.CAEIT, Beijing 100041, China;
6.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China;
7.Institute of Space Weather, Nanjing University of Information Science & Technology, Nanjing 210044, China
推荐引用方式
GB/T 7714
Zhang, Wanting,Zhao, Xinhua,Feng, Xueshang,et al. Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method[J]. UNIVERSE,2022,8(1).
APA Zhang, Wanting.,Zhao, Xinhua.,Feng, Xueshang.,Liu, Cheng’ao.,向南彬.,...&Lu, Wei.(2022).Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method.UNIVERSE,8(1).
MLA Zhang, Wanting,et al."Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method".UNIVERSE 8.1(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Predicting the Daily(4975KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Wanting]的文章
[Zhao, Xinhua]的文章
[Feng, Xueshang]的文章
百度学术
百度学术中相似的文章
[Zhang, Wanting]的文章
[Zhao, Xinhua]的文章
[Feng, Xueshang]的文章
必应学术
必应学术中相似的文章
[Zhang, Wanting]的文章
[Zhao, Xinhua]的文章
[Feng, Xueshang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Predicting the Daily 10.7-cm Solar Radio Flux Using the Long Short-Term Memory Method.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。