YNAO OpenIR  > 南方基地
Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks
Wang, Shoucheng1,2,3; Chen, Bingqiu2; Ma, Jun1,3; Long Q(龙潜)4; Yuan, Haibo5; Liu, Dezi2; Zhou, Zhimin1; Liu, Wei6; Chen, Jiamin7; He, Zizhao3,8
发表期刊ASTRONOMY & ASTROPHYSICS
2022-02-01
卷号658
DOI10.1051/0004-6361/202142169
产权排序第4完成单位
收录类别SCI ; EI
关键词galaxies: star clusters: general galaxies: star clusters: individual: M 31
摘要

Context. Identification of new star cluster candidates in M 31 is fundamental for the study of the M 31 stellar cluster system. The machine-learning method convolutional neural network (CNN) is an efficient algorithm for searching for new M 31 star cluster candidates from tens of millions of images from wide-field photometric surveys. Aims. We search for new M 31 cluster candidates from the high-quality g- and i-band images of 21 245 632 sources obtained from the Pan-Andromeda Archaeological Survey (PAndAS) through a CNN. Methods. We collected confirmed M 31 clusters and noncluster objects from the literature as our training sample. Accurate double-channel CNNs were constructed and trained using the training samples. We applied the CNN classification models to the PAndAS g-and i-band images of over 21 million sources to search new M 31 cluster candidates. The CNN predictions were finally checked by five experienced human inspectors to obtain high-confidence M 31 star cluster candidates. Results. After the inspection, we identified a catalogue of 117 new M 31 cluster candidates. Most of the new candidates are young clusters that are located in the M 31 disk. Their morphology, colours, and magnitudes are similar to those of the confirmed young disk clusters. We also identified eight globular cluster candidates that are located in the M 31 halo and exhibit features similar to those of confirmed halo globular clusters. The projected distances to the M 31 centre for three of them are larger than 100 kpc.

资助项目National Key R&D Program of China[2019YFA0405501] ; National Key R&D Program of China[2019YFA0405503] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11803029] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11873053] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11773074] ; Yunnan University[C619300A034]
项目资助者National Key R&D Program of China[2019YFA0405501, 2019YFA0405503] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11803029, 11873053, 11773074] ; Yunnan University[C619300A034]
语种英语
学科领域天文学 ; 恒星与银河系
文章类型Article
出版者EDP SCIENCES S A
出版地17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE
ISSN0004-6361
URL查看原文
WOS记录号WOS:000749262400001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]KILO-DEGREE SURVEY ; GLOBULAR-CLUSTERS ; DATA RELEASE ; SKY SURVEY ; M31 ; I. ; CATALOG ; PHOTOMETRY ; GALAXY ; FIELD
EI入藏号20220611607985
EI主题词Sampling
EI分类号657.2 Extraterrestrial Physics and Stellar Phenomena - 716.1 Information Theory and Signal Processing
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/24845
专题南方基地
通讯作者Chen, Bingqiu
作者单位1.Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China;
2.South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650091, PR China;
3.School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China;
4.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, PR China;
5.Department of Astronomy, Beijing Normal University, Beijing 100875, PR China;
6.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China;
7.School of Computer Science and Engineering, Central South University, Changsha 410083, PR China;
8.Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China
推荐引用方式
GB/T 7714
Wang, Shoucheng,Chen, Bingqiu,Ma, Jun,et al. Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks[J]. ASTRONOMY & ASTROPHYSICS,2022,658.
APA Wang, Shoucheng.,Chen, Bingqiu.,Ma, Jun.,Long Q.,Yuan, Haibo.,...&He, Zizhao.(2022).Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks.ASTRONOMY & ASTROPHYSICS,658.
MLA Wang, Shoucheng,et al."Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks".ASTRONOMY & ASTROPHYSICS 658(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Identification of ne(2341KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shoucheng]的文章
[Chen, Bingqiu]的文章
[Ma, Jun]的文章
百度学术
百度学术中相似的文章
[Wang, Shoucheng]的文章
[Chen, Bingqiu]的文章
[Ma, Jun]的文章
必应学术
必应学术中相似的文章
[Wang, Shoucheng]的文章
[Chen, Bingqiu]的文章
[Ma, Jun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。