Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks | |
Wang, Shoucheng1,2,3; Chen, Bingqiu2; Ma, Jun1,3; Long Q(龙潜)4; Yuan, Haibo5; Liu, Dezi2; Zhou, Zhimin1; Liu, Wei6; Chen, Jiamin7; He, Zizhao3,8 | |
发表期刊 | ASTRONOMY & ASTROPHYSICS |
2022-02-01 | |
卷号 | 658 |
DOI | 10.1051/0004-6361/202142169 |
产权排序 | 第4完成单位 |
收录类别 | SCI ; EI |
关键词 | galaxies: star clusters: general galaxies: star clusters: individual: M 31 |
摘要 | Context. Identification of new star cluster candidates in M 31 is fundamental for the study of the M 31 stellar cluster system. The machine-learning method convolutional neural network (CNN) is an efficient algorithm for searching for new M 31 star cluster candidates from tens of millions of images from wide-field photometric surveys. Aims. We search for new M 31 cluster candidates from the high-quality g- and i-band images of 21 245 632 sources obtained from the Pan-Andromeda Archaeological Survey (PAndAS) through a CNN. Methods. We collected confirmed M 31 clusters and noncluster objects from the literature as our training sample. Accurate double-channel CNNs were constructed and trained using the training samples. We applied the CNN classification models to the PAndAS g-and i-band images of over 21 million sources to search new M 31 cluster candidates. The CNN predictions were finally checked by five experienced human inspectors to obtain high-confidence M 31 star cluster candidates. Results. After the inspection, we identified a catalogue of 117 new M 31 cluster candidates. Most of the new candidates are young clusters that are located in the M 31 disk. Their morphology, colours, and magnitudes are similar to those of the confirmed young disk clusters. We also identified eight globular cluster candidates that are located in the M 31 halo and exhibit features similar to those of confirmed halo globular clusters. The projected distances to the M 31 centre for three of them are larger than 100 kpc. |
资助项目 | National Key R&D Program of China[2019YFA0405501] ; National Key R&D Program of China[2019YFA0405503] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11803029] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11873053] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11773074] ; Yunnan University[C619300A034] |
项目资助者 | National Key R&D Program of China[2019YFA0405501, 2019YFA0405503] ; National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC)[11803029, 11873053, 11773074] ; Yunnan University[C619300A034] |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | EDP SCIENCES S A |
出版地 | 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE |
ISSN | 0004-6361 |
URL | 查看原文 |
WOS记录号 | WOS:000749262400001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | KILO-DEGREE SURVEY ; GLOBULAR-CLUSTERS ; DATA RELEASE ; SKY SURVEY ; M31 ; I. ; CATALOG ; PHOTOMETRY ; GALAXY ; FIELD |
EI入藏号 | 20220611607985 |
EI主题词 | Sampling |
EI分类号 | 657.2 Extraterrestrial Physics and Stellar Phenomena - 716.1 Information Theory and Signal Processing |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/24845 |
专题 | 南方基地 |
通讯作者 | Chen, Bingqiu |
作者单位 | 1.Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China; 2.South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650091, PR China; 3.School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; 4.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, PR China; 5.Department of Astronomy, Beijing Normal University, Beijing 100875, PR China; 6.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; 7.School of Computer Science and Engineering, Central South University, Changsha 410083, PR China; 8.Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China |
推荐引用方式 GB/T 7714 | Wang, Shoucheng,Chen, Bingqiu,Ma, Jun,et al. Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks[J]. ASTRONOMY & ASTROPHYSICS,2022,658. |
APA | Wang, Shoucheng.,Chen, Bingqiu.,Ma, Jun.,Long Q.,Yuan, Haibo.,...&He, Zizhao.(2022).Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks.ASTRONOMY & ASTROPHYSICS,658. |
MLA | Wang, Shoucheng,et al."Identification of new M 31 star cluster candidates from PAndAS images using convolutional neural networks".ASTRONOMY & ASTROPHYSICS 658(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Identification of ne(2341KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论