YNAO OpenIR  > 抚仙湖太阳观测和研究基地
Predicting the 25th solar cycle using deep learning methods based on sunspot area data
Li, Qiang1; Wan, Miao1; Zeng, Shu-Guang1; Zheng, Sheng1; Deng LH(邓林华)2
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2021-08
卷号21期号:7
DOI10.1088/1674-4527/21/7/184
产权排序第2完成单位
收录类别SCI
关键词Sun activity Sun solar cycle prediction Sun sunspot area Method deep neural network
摘要

It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-short-term memory (LSTM) and neural network autoregression (NNAR) deep learning methods to predict the upcoming 25th solar cycle using the sunspot area (SSA) data during the period of May 1874 to December 2020. Our results show that the 25th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115 +/- 401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value.

资助项目National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031202] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1731124] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1531247] ; special foundation work of the Ministry of Science and Technology of the People's Republic of China[2014FY120300] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505-04]
项目资助者National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031202, U1731124, U1531247] ; special foundation work of the Ministry of Science and Technology of the People's Republic of China[2014FY120300] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505-04]
语种英语
学科领域天文学 ; 太阳与太阳系 ; 计算机科学技术 ; 人工智能
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:000691271400001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/24558
专题抚仙湖太阳观测和研究基地
通讯作者Zeng, Shu-Guang
作者单位1.College of Science, China Three Gorges University, Yichang 443002, China;
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China
推荐引用方式
GB/T 7714
Li, Qiang,Wan, Miao,Zeng, Shu-Guang,et al. Predicting the 25th solar cycle using deep learning methods based on sunspot area data[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2021,21(7).
APA Li, Qiang,Wan, Miao,Zeng, Shu-Guang,Zheng, Sheng,&Deng LH.(2021).Predicting the 25th solar cycle using deep learning methods based on sunspot area data.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,21(7).
MLA Li, Qiang,et al."Predicting the 25th solar cycle using deep learning methods based on sunspot area data".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 21.7(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Predicting the 25th (282KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Qiang]的文章
[Wan, Miao]的文章
[Zeng, Shu-Guang]的文章
百度学术
百度学术中相似的文章
[Li, Qiang]的文章
[Wan, Miao]的文章
[Zeng, Shu-Guang]的文章
必应学术
必应学术中相似的文章
[Li, Qiang]的文章
[Wan, Miao]的文章
[Zeng, Shu-Guang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Predicting the 25th solar cycle using deep learning methods based on sunspot area data.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。