Institutional Repository System Of Yunnan Observatories, CAS
A novel method for telescope polarization modeling based on an artificial neural network | |
Peng JG(彭建国)1,2; Yuan S(袁沭)1; Ji KF(季凯帆)1; Xu Z(徐稚)1 | |
发表期刊 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS |
2021-08 | |
卷号 | 21期号:7 |
DOI | 10.1088/1674-4527/21/7/159 |
产权排序 | 第1完成单位 |
收录类别 | SCI |
关键词 | techniques polarimetric telescopes polarization instrumentation polarimeters |
摘要 | The polarization characteristics of an astronomical telescope is an important factor that affects polarimetry accuracy. Polarization modeling is an essential means to achieve high precision and efficient polarization measurement of the telescope, especially for the alt-azimuth mount telescope. At present, the polarization model for the telescope (i.e., the physical parametric model) is mainly constructed using the polarization parameters of each optical element. In this paper, an artificial neural network (ANN) is used to model the polarization characteristics of the telescope. The ANN model between the physical parametric model residual and the pointing direction of the telescope is obtained, which reduces the model deviation caused by the incompleteness of the physical parametric model. Compared with the physical parametric model, the model fitting and predictive accuracy of the New Vacuum Solar Telescope (NVST) is improved after adopting the ANN model. After using the ANN model, the polarization cross-talk from I to Q, U, and V can be reduced from 0.011 to 0.007, and the crosstalk among Q, U, and V can be reduced from 0.047 to 0.020, which effectively improves the polarization measurement accuracy of the telescope. |
资助项目 | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11833010] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11773069] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11773072] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873091] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073077] ; Key Research and Development Project of Yunnan Province[202003AD150019] ; Yunnan Province Basic Research Plan[2019FA001] ; CAS 'Light of West China' Program[Y9XB015001] |
项目资助者 | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11833010, 11773069, 11773072, 11873091, 12073077] ; Key Research and Development Project of Yunnan Province[202003AD150019] ; Yunnan Province Basic Research Plan[2019FA001] ; CAS 'Light of West China' Program[Y9XB015001] |
语种 | 英语 |
学科领域 | 物理学 ; 光学 ; 天文学 ; 天文学其他学科 |
文章类型 | Article |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA |
ISSN | 1674-4527 |
URL | 查看原文 |
WOS记录号 | WOS:000691273900001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | CALIBRATION |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/24553 |
专题 | 天文技术实验室 光纤阵列太阳光学望远镜研究组 |
通讯作者 | Yuan S(袁沭) |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China |
第一作者单位 | 中国科学院云南天文台 |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Peng JG,Yuan S,Ji KF,et al. A novel method for telescope polarization modeling based on an artificial neural network[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2021,21(7). |
APA | Peng JG,Yuan S,Ji KF,&Xu Z.(2021).A novel method for telescope polarization modeling based on an artificial neural network.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,21(7). |
MLA | Peng JG,et al."A novel method for telescope polarization modeling based on an artificial neural network".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 21.7(2021). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A novel method for t(2471KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论