YNAO OpenIR  > 抚仙湖太阳观测和研究基地
Predicting the evolution of photospheric magnetic field in solar active regions using deep learning
Bai, Liang1; Bi Y(毕以)2; Yang B(杨波)2; Hong JC(洪俊超)2; Xu, Zhe3; Shang, Zhen-Hong1,4; Liu H(刘辉)2; Ji, Hai-Sheng3; Ji KF(季凯帆)2
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2021-06
卷号21期号:5
DOI10.1088/1674-4527/21/5/113
产权排序第2完成单位
收录类别SCI
关键词methods data analysis Sun magnetic fields spatiotemporal prediction recurrent neural network
摘要

The continuous observation of the magnetic field by the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) produces numerous image sequences in time and space. These sequences provide data support for predicting the evolution of photospheric magnetic field. Based on the spatiotemporal long short-term memory (LSTM) network, we use the preprocessed data of photospheric magnetic field in active regions to build a prediction model for magnetic field evolution. Because of the elaborate learning and memory mechanism, the trained model can characterize the inherent relationships contained in spatiotemporal features. The testing results of the prediction model indicate that (1) the prediction pattern learned by the model can be applied to predict the evolution of new magnetic field in the next 6 hours that have not been trained, and predicted results are roughly consistent with real observed magnetic field evolution in terms of large-scale structure and movement speed; (2) the performance of the model is related to the prediction time; the shorter the prediction time, the higher the accuracy of the predicted results; (3) the performance of the model is stable not only for active regions in the north and south but also for data in positive and negative regions. Detailed experimental results and discussions on magnetic flux emergence and magnetic neutral lines finally show that the proposed model could effectively predict the large-scale and short-term evolution of the photospheric magnetic field in active regions. Moreover, our study may provide a reference for the spatiotemporal prediction of other solar activities.

资助项目National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073077] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873027] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031140] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11773072] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12063002]
项目资助者National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073077, 11873027, U2031140, 11773072, 12063002]
语种英语
学科领域天文学 ; 太阳与太阳系 ; 计算机科学技术 ; 人工智能 ; 计算机应用
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:000663186800001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/24439
专题抚仙湖太阳观测和研究基地
太阳物理研究组
天文技术实验室
通讯作者Ji KF(季凯帆)
作者单位1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China;
3.Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China;
4.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Bai, Liang,Bi Y,Yang B,et al. Predicting the evolution of photospheric magnetic field in solar active regions using deep learning[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2021,21(5).
APA Bai, Liang.,Bi Y.,Yang B.,Hong JC.,Xu, Zhe.,...&Ji KF.(2021).Predicting the evolution of photospheric magnetic field in solar active regions using deep learning.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,21(5).
MLA Bai, Liang,et al."Predicting the evolution of photospheric magnetic field in solar active regions using deep learning".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 21.5(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Predicting the evolu(5039KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bai, Liang]的文章
[Bi Y(毕以)]的文章
[Yang B(杨波)]的文章
百度学术
百度学术中相似的文章
[Bai, Liang]的文章
[Bi Y(毕以)]的文章
[Yang B(杨波)]的文章
必应学术
必应学术中相似的文章
[Bai, Liang]的文章
[Bi Y(毕以)]的文章
[Yang B(杨波)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Predicting the evolution of photospheric magnetic field in solar active regions using deep learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。