Predicting the evolution of photospheric magnetic field in solar active regions using deep learning | |
Bai, Liang1; Bi Y(毕以)2; Yang B(杨波)2; Hong JC(洪俊超)2; Xu, Zhe3; Shang, Zhen-Hong1,4; Liu H(刘辉)2; Ji, Hai-Sheng3; Ji KF(季凯帆)2 | |
发表期刊 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS |
2021-06 | |
卷号 | 21期号:5 |
DOI | 10.1088/1674-4527/21/5/113 |
产权排序 | 第2完成单位 |
收录类别 | SCI |
关键词 | methods data analysis Sun magnetic fields spatiotemporal prediction recurrent neural network |
摘要 | The continuous observation of the magnetic field by the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) produces numerous image sequences in time and space. These sequences provide data support for predicting the evolution of photospheric magnetic field. Based on the spatiotemporal long short-term memory (LSTM) network, we use the preprocessed data of photospheric magnetic field in active regions to build a prediction model for magnetic field evolution. Because of the elaborate learning and memory mechanism, the trained model can characterize the inherent relationships contained in spatiotemporal features. The testing results of the prediction model indicate that (1) the prediction pattern learned by the model can be applied to predict the evolution of new magnetic field in the next 6 hours that have not been trained, and predicted results are roughly consistent with real observed magnetic field evolution in terms of large-scale structure and movement speed; (2) the performance of the model is related to the prediction time; the shorter the prediction time, the higher the accuracy of the predicted results; (3) the performance of the model is stable not only for active regions in the north and south but also for data in positive and negative regions. Detailed experimental results and discussions on magnetic flux emergence and magnetic neutral lines finally show that the proposed model could effectively predict the large-scale and short-term evolution of the photospheric magnetic field in active regions. Moreover, our study may provide a reference for the spatiotemporal prediction of other solar activities. |
资助项目 | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073077] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11873027] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U2031140] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11773072] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12063002] |
项目资助者 | National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12073077, 11873027, U2031140, 11773072, 12063002] |
语种 | 英语 |
学科领域 | 天文学 ; 太阳与太阳系 ; 计算机科学技术 ; 人工智能 ; 计算机应用 |
文章类型 | Article |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100012, PEOPLES R CHINA |
ISSN | 1674-4527 |
URL | 查看原文 |
WOS记录号 | WOS:000663186800001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/24439 |
专题 | 抚仙湖太阳观测和研究基地 太阳物理研究组 天文技术实验室 |
通讯作者 | Ji KF(季凯帆) |
作者单位 | 1.Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; 2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; 3.Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China; 4.Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Bai, Liang,Bi Y,Yang B,et al. Predicting the evolution of photospheric magnetic field in solar active regions using deep learning[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2021,21(5). |
APA | Bai, Liang.,Bi Y.,Yang B.,Hong JC.,Xu, Zhe.,...&Ji KF.(2021).Predicting the evolution of photospheric magnetic field in solar active regions using deep learning.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,21(5). |
MLA | Bai, Liang,et al."Predicting the evolution of photospheric magnetic field in solar active regions using deep learning".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 21.5(2021). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Predicting the evolu(5039KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论