YNAO OpenIR  > 天文技术实验室
CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method
Zhang T(张涛)1,2,3; Li, Xinyang1; Li, Jianfeng2; Xu Z(徐稚)3
发表期刊APPLIED SCIENCES-BASEL
2020-06-01
卷号10期号:11页码:26
DOI10.3390/app10113694
产权排序第3完成单位
收录类别SCI
关键词FPN low rank sparse total variation anisotropy characteristic
摘要

Fixed pattern noise (FPN) has always been an important factor affecting the imaging quality of CMOS image sensor (CIS). However, the current scene-based FPN removal methods mostly focus on the image itself, and seldom consider the structure information of the FPN, resulting in various undesirable noise removal effects. This paper presents a scene-based FPN correction method: the low rank sparse variational method (LRSUTV). It combines not only the continuity of the image itself, but also the structural and statistical characteristics of the stripes. At the same time, the low frequency information of the image is combined to achieve adaptive adjustment of some parameters, which simplifies the process of parameter adjustment, to a certain extent. With the help of adaptive parameter adjustment strategy, LRSUTV shows good performance under different intensity of stripe noise, and has high robustness.

资助项目National Natural Science Foundation of China[11573066] ; National Natural Science Foundation of China[11873091] ; Yunnan Province Basic Research Plan[2019FA001]
项目资助者National Natural Science Foundation of China[11573066, 11873091] ; Yunnan Province Basic Research Plan[2019FA001]
语种英语
学科领域电子、通信与自动控制技术
文章类型Article
出版者MDPI
出版地ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND
URL查看原文
WOS记录号WOS:000543385900031
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
关键词[WOS]REMOTE-SENSING IMAGES ; WAVELET
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/23539
专题天文技术实验室
抚仙湖太阳观测和研究基地
通讯作者Zhang T(张涛)
作者单位1.Key Laboratory of Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
2.School of Optoelectronic Information, University of Electronic Science and Technology, Chengdu 611731, China
3.Astronomical Technology Laboratory, Yunnan Observatory, Chinese Academy of Sciences, Kunming 650216, China
第一作者单位中国科学院云南天文台
通讯作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Zhang T,Li, Xinyang,Li, Jianfeng,et al. CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method[J]. APPLIED SCIENCES-BASEL,2020,10(11):26.
APA Zhang T,Li, Xinyang,Li, Jianfeng,&Xu Z.(2020).CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method.APPLIED SCIENCES-BASEL,10(11),26.
MLA Zhang T,et al."CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method".APPLIED SCIENCES-BASEL 10.11(2020):26.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CMOS Fixed Pattern N(12663KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang T(张涛)]的文章
[Li, Xinyang]的文章
[Li, Jianfeng]的文章
百度学术
百度学术中相似的文章
[Zhang T(张涛)]的文章
[Li, Xinyang]的文章
[Li, Jianfeng]的文章
必应学术
必应学术中相似的文章
[Zhang T(张涛)]的文章
[Li, Xinyang]的文章
[Li, Jianfeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。