YNAO OpenIR  > 太阳物理研究组
Sunspot drawings handwritten character recognition method based on deep learning
Zheng, Sheng1; Zeng, Xiangyun1; Lin, Ganghua2; Zhao, Cui2; Feng YL(冯永利)3; Tao JP(陶金萍)3; Zhu, Daoyuan1; Xiong, Li1
发表期刊NEW ASTRONOMY
2016-05-01
卷号45页码:54-59
DOI10.1016/j.newast.2015.11.001
产权排序第3完成单位
收录类别SCI
关键词Sunspot Drawings Convolution Neural Network Handwriting Character Recognition
摘要

High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate. (C) 2015 Elsevier B.V. All rights reserved.

资助项目National Natural Science Fund Committee ; Chinese Academy of Sciences astronomical union funds[U1331113] ; Chinese Academy of Sciences astronomical union funds[2014FY120300]
项目资助者National Natural Science Fund Committee ; Chinese Academy of Sciences astronomical union funds[U1331113, 2014FY120300]
语种英语
学科领域天文学 ; 太阳与太阳系
文章类型Article
出版者ELSEVIER SCIENCE BV
出版地PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
ISSN1384-1076
URL查看原文
WOS记录号WOS:000369200700009
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]CATALOG
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/9325
专题太阳物理研究组
通讯作者Zeng, Xiangyun
作者单位1.College of Science, China Three Gorges University, Yichang 443002, China
2.Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
3.Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming, Yunnan 650011, China
推荐引用方式
GB/T 7714
Zheng, Sheng,Zeng, Xiangyun,Lin, Ganghua,et al. Sunspot drawings handwritten character recognition method based on deep learning[J]. NEW ASTRONOMY,2016,45:54-59.
APA Zheng, Sheng.,Zeng, Xiangyun.,Lin, Ganghua.,Zhao, Cui.,Feng YL.,...&Xiong, Li.(2016).Sunspot drawings handwritten character recognition method based on deep learning.NEW ASTRONOMY,45,54-59.
MLA Zheng, Sheng,et al."Sunspot drawings handwritten character recognition method based on deep learning".NEW ASTRONOMY 45(2016):54-59.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Sunspot drawings han(2452KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Sheng]的文章
[Zeng, Xiangyun]的文章
[Lin, Ganghua]的文章
百度学术
百度学术中相似的文章
[Zheng, Sheng]的文章
[Zeng, Xiangyun]的文章
[Lin, Ganghua]的文章
必应学术
必应学术中相似的文章
[Zheng, Sheng]的文章
[Zeng, Xiangyun]的文章
[Lin, Ganghua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Sunspot drawings handwritten character recognition method based on deep learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。