YNAO OpenIR  > 太阳物理研究组
太阳光球磁场自转研究
其他题名Study on the Rotation of Solar Photospheric Magnetic Fields
石祥军
学位类型博士
导师李可军
2015-07-01
学位授予单位中国科学院研究生院
学位授予地点北京
学位专业天体物理
关键词太阳磁场 太阳自转 太阳光球
摘要早在十七世纪,人们在观测太阳黑子时,就发现了太阳自转现象的存在。而对于太阳光球磁场自转的研究则是在有持续的磁图数据观测之后。太阳磁场在太阳上各种各样现象的存在和变化中起着关键的作用。太阳磁场是太阳活动的本质原因,在太阳发电机理论中,弱的极向磁场能转化为强的环向磁场的过程,离不开较差自转的作用。对太阳磁场自转速度变化的研究,有利于理解太阳活动的物理本质。 本文主要研究太阳光球磁场的自转,包括自转的纬度轮廓、随时间变化以及不同极性磁场的自转差异等,具体分为五个部分。 第一章,太阳光球磁场的自转研究的概述。先对光球磁场、表面磁结构和太阳自转做了一个简要的介绍。接着详细介绍了两种分析磁场模式的自转速度的方法:自相关方法和交叉相关方法,并把它们进行比较。然后简单总结了已有的太阳光球磁场自转的研究,包括自转的纬度轮廓、随时间变化、南北不对称性以及其与磁场强度关系的研究。其中,重点介绍了两种不同的自转轮廓:标准的较差自转轮廓和准刚性自转轮廓。最后介绍了前人关于不同极性的示踪物或磁场模式的自转的研究。 第二章,通过对卡林顿综合磁图进行交叉相关方法分析,得到了卡林顿自转周1625到2129(即1975 年2 月到2012 年10 月)的太阳磁场在纬度±60度内的自转速度,并给出了光球磁场的平均自转轮廓:自转速度从赤道一直下降到中纬度,并且在北半球(南半球)53度(54度)达到极小值约为13.16 deg/day(13.17 deg/day),在更高纬度,自转速度反而随着纬度的增加而有所增加。最后讨论了几种可能导致准刚性自转轮廓的原因。 第三章,在使用交叉相关分析方法分别得到卡林顿综合磁图在纬度±60度内太阳磁场的正极性磁场(简称正场)和负极性磁场(简称负场)的自转速度的基础上,计算了正场和负场的自转速度差,并给出了自转速度差的时间-纬度分布,结果显示在低纬度和中纬度呈现出类似的蝴蝶图的分布。把自转速度的时间–纬度分布和光球磁场强度在经度上的平均值的时间-纬度分布做比较,可以发现:在北半球和南半球的低纬度和中纬度区域,前导极性磁场比后随极性磁场转得更快。但是在较高纬度,前导极性的自转速度并不总是比后随的快。通过相关性分析,我还进一步研究了自转速度差和磁场强度之间的关系,并讨论了引起它们的相关系数随纬度变化的可能原因。 第四章,研究了目前太阳活动第24周太阳光球磁场的综合磁图,给出了某些纬度正场和负场的自转速度随时间变化,发现:在北半球的低纬度区域,负场通常比正场自转得快;而在南半球的低纬度区域,正场通常比负场自转得快。还得到了目前太阳活动第24周的总场、正场和负场的平均自转轮廓,结果显示,正场的平均自转速度在南半球纬度约为9度达到极大值;负场的平均自转速度在北半球纬度约为6度达到极大值;总场的平均自转轮廓呈现明显的南北不对称性,北半球的自转看起来更较差。而对正负极性磁场自转速度差随纬度变化的研究结果表明,除了南半球纬度52度附近区域和北半球纬度35度附近区域外,前导极性磁场的平均自转速度都比后随极性磁场的平均自转速度更大。 最后,简单总结了本文所研究的内容,指出太阳光球磁场自转研究中还有许多尚未解决的问题,并提出了下一步研究可能开展的方向。
其他摘要The discovery of solar rotation is closely related to the discovery of sunspots. Early in seventeenth, the solar rotation was observed. The rotation of the pattern of magnetic fields is studied after the continuous record of magnetograms. Solar magnetic fields play an important role in existence and variability of solar activity. Much solar activity seems to be connected with the magnetic fields. In the dynamo theories, the differential rotation provides a mechanism for the conversion of a poloidal magnetic field into a toroidal field. Doing research about the rotation of solar magnetic fields is helpful in understanding the physical process of solar activity. The thesis, which is presented in five chapters, makes a study of the rotation of the photospheric magnetic fields about the rotation profile, the temporal variation and the difference in the rotation of different polarities. In chapter one, a brief introduction about the photospheric magnetic fields, surface magnetic features and the solar rotation relevant to my study is given first. The autocorrelation method and the cross-correlation method, which have been applied to analyze the rotation of the observed pattern of solar magnetic fields, are described and contrasted in detail. Then a review of the present status of the rotation of the photospheric magnetic fields is present, including its latitude-variation, its temporal variation, its north-south asymmetry, as well as its relationship with the strength of magnetic fields. Two different rotation laws, the normal differential rotation profile and the quasi-rigid rotation profile, as well as the possible reasons for the difference between them, are chiefly introduced. At the end of this chapter, the previous study of the rotation of different polarities is reviewed. In chapter two, through a cross-correlation analysis of the Carrington synoptic maps, the sidereal rotation rates of solar magnetic fields between ±60 deg latitudes are investigated. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg/day (13.17 deg/day, sidereal) at 53 deg (54 deg) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. Some possible interpretations are discussed for the resulting rotation profile. In chapter three, the differences in sidereal rotation rates between the positive and negative magnetic fields in the latitude range of ±60 deg are obtained separately. And the time-latitude distribution of the rotation rate differences is shown,which looks like a series of butterfly at low latitudes. For comparison, the time-latitude distribution of longitudinally-averaged photospheric magnetic field strength is shown. And it is concluded that the magnetic fields with leading polarity rotate faster than those with the following polarity at low and middle latitudes of both northern and southern hemispheres. However, at higher latitudes, the magnetic fields with leading polarity do not always rotate faster than those with following polarity. Further more, the relationship between the rotation rate differences and solar magnetic field strength is studied through the correlation analysis. Some possible interpretations are discussed for the resulting correlation coefficients. In chapter four, the rotation of the magnetic fields for the present solar cycle 24 is investigated still through a cross-correlation analysis of the Carrington synoptic maps. The temporal variation of sidereal rotation rates of positive and negative magnetic fields at some latitudes are shown, and it can be found that, at low latitudes, the negative fields generally rotate faster than the positive fields in the northern hemisphere, the positive fields generally rotate faster than the negative fields in the southern hemisphere. The mean rotation profiles of the total, positive and negative magnetic fields in the time interval are also obtained. The mean rotation rates of the positive polarity reach their maximum values at about 9 deg latitude in the southern hemisphere. The mean rotation rates of the negative polarity reach their maximum values at about 6 deg latitude in the northern hemisphere. The mean rotation profile of the total magnetic fields displays an obvious north-south asymmetry that the rotation seems to be more differential in the northern hemisphere. The latitude-variation of the rotation rate difference between positive and negative magnetic fields is further studied, and it is found that the magnetic fields with leading polarity rotate faster than those with the following polarity in each hemisphere, except for the zones around 52 deg latitude of the southern hemisphere and around 35 deg latitude of the northern hemisphere. In the last chapter, a brief summary of this thesis is provided and some unsolved questions about the differential rotation of the photospheric magnetic fields are mentioned. And a forecast for the future related research is put forward.
学科领域天文学
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/6627
专题太阳物理研究组
作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
石祥军. 太阳光球磁场自转研究[D]. 北京. 中国科学院研究生院,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
太阳光球磁场自转研究.pdf(10542KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[石祥军]的文章
百度学术
百度学术中相似的文章
[石祥军]的文章
必应学术
必应学术中相似的文章
[石祥军]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 太阳光球磁场自转研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。