Metric universalities and systems of renormalization group equations for bimodal maps | |
Zhang, Yan-Yang1; Cao KF(曹克非)1,2,3 | |
发表期刊 | CHAOS SOLITONS & FRACTALS |
2004-07 | |
卷号 | 21期号:2页码:457-471 |
DOI | 10.1016/j.chaos.2003.12.049 |
产权排序 | 第2完成单位 |
收录类别 | SCI ; EI |
摘要 | For bimodal maps the Feigenbaum's renormalization group (RG) equation is generalized to a system of two independent RG equations, each corresponding to a critical point. A series of numerical solutions to systems of the RG equations are obtained, which explain the metric universalities of period-tripling and period-quadrupling bifurcations. For a special type of period-p-tupling bifurcations, it is found that the "collision" of the two critical points of bimodal maps leads to a quadratic relation between the two universal scaling factors. (C) 2004 Elsevier Ltd. All rights reserved. |
语种 | 英语 |
学科领域 | 数学 ; 物理学 |
文章类型 | Article |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
出版地 | THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND |
ISSN | 0960-0779 |
URL | 查看原文 |
WOS记录号 | WOS:000220150000021 |
WOS研究方向 | Mathematics ; Physics |
WOS类目 | Mathematics, Interdisciplinary Applications ; Physics, Multidisciplinary ; Physics, Mathematical |
关键词[WOS] | Non-linear Transformations ; One-dimensional Maps ; Feigenbaum Conjectures ; Fractal Dimensions ; Symbolic Dynamics ; Fixed-points ; Bifurcation ; Behavior ; Chaos ; Proof |
EI入藏号 | 2004098040444 |
EI主题词 | Bifurcation (Mathematics) |
EI分类号 | 723.4artificial Intelligence - 921mathematics - 921.1algebra - 921.5optimization Techniques - 921.6numerical Methods |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/4177 |
专题 | 其他 |
通讯作者 | Cao KF(曹克非) |
作者单位 | 1.Department of Physics, Center for Nonlinear Complex Systems, School of Mathematics and Physics, Yunnan University, Kunming, Yunnan 650091, China 2.National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011, China 3.CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China |
通讯作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Zhang, Yan-Yang,Cao KF. Metric universalities and systems of renormalization group equations for bimodal maps[J]. CHAOS SOLITONS & FRACTALS,2004,21(2):457-471. |
APA | Zhang, Yan-Yang,&Cao KF.(2004).Metric universalities and systems of renormalization group equations for bimodal maps.CHAOS SOLITONS & FRACTALS,21(2),457-471. |
MLA | Zhang, Yan-Yang,et al."Metric universalities and systems of renormalization group equations for bimodal maps".CHAOS SOLITONS & FRACTALS 21.2(2004):457-471. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Metric universalitie(976KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Yan-Yang]的文章 |
[Cao KF(曹克非)]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Yan-Yang]的文章 |
[Cao KF(曹克非)]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Yan-Yang]的文章 |
[Cao KF(曹克非)]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论