The diversity of strongly interacting Type IIn supernovae | |
Salmaso, I.1; Cappellaro, E.1; Tartaglia, L.1,2; Anderson, J. P.3,4; Benetti, S.1; Bronikowski, M.5; Cai YZ(蔡永志)6,7,8![]() | |
发表期刊 | ASTRONOMY & ASTROPHYSICS
![]() |
2025-02-27 | |
卷号 | 695 |
DOI | 10.1051/0004-6361/202451764 |
产权排序 | 第6完成单位 |
收录类别 | SCI ; EI |
关键词 | neutrinos supernovae: general supernovae: individual: 2021acya supernovae: individual: 2021adxl supernovae: individual: 2022qml supernovae: individual: 2022wed |
摘要 | Context. At late stages, massive stars experience strong mass-loss rates, losing their external layers and thus producing a dense H-rich circumstellar medium (CSM). After the explosion of a massive star, the collision and continued interaction of the supernova (SN) ejecta with the CSM power the SN light curve through the conversion of kinetic energy into radiation. When the interaction is strong, the light curve shows a broad peak and high luminosity that lasts for several months. For these SNe, the spectral evolution is also slower compared to non-interacting SNe. Notably, energetic shocks between the ejecta and the CSM create the ideal conditions for particle acceleration and the production of high-energy (HE) neutrinos above 1 TeV. Aims. We study four strongly interacting Type IIn SNe, 2021acya, 2021adxl, 2022qml, and 2022wed, in order to highlight their peculiar characteristics, derive the kinetic energy of their explosion and the characteristics of the CSM, infer clues on the possible progenitors and their environment, and relate them to the production of HE neutrinos. Methods. We analysed spectro-photometric data of a sample of interacting SNe to determine their common characteristics and derive the physical properties (radii and masses) of the CSM and the ejecta kinetic energies and compare them to HE neutrino production models. Results. The SNe analysed in this sample exploded in dwarf star-forming galaxies, and they are consistent with energetic explosions and strong interaction with the surrounding CSM. For SNe 2021acya and 2022wed, we find high CSM masses and mass-loss rates, linking them to very massive progenitors. For SN 2021adxl, the spectral analysis and less extreme CSM mass suggest a stripped-envelope massive star as a possible progenitor. SN 2022qml is marginally consistent with being a Type Ia thermonuclear explosion embedded in a dense CSM. The mass-loss rates for all the SNe are consistent with the expulsion of several solar masses of material during eruptive episodes in the last few decades before the explosion. Finally, we find that the SNe in our sample are marginally consistent with HE neutrino production. |
资助项目 | MIUR[20179ZF5KS]; PRIN-INAF 2022 project Shedding light on the nature of gap transients: from the observations to the models; National Natural Science Foundation of China (NSFC)[12303054]; National Key Research and Development Program of China[2024YFA1611603]; Yunnan Fundamental Research Projects[202401AU070063]; International Centre of Supernovae, Yunnan Key Laboratory[202302AN360001]; Millennium Science Initiative[ICN12_009]; ANID through the Beca Doctorado Nacional[202221222222]; European Research Council (ERC) under the European Union[948381]; UK Space Agency[ST/Y000692/1]; Spanish Ministerio de Ciencia e Innovacin (MCIN); Agencia Estatal de Investigacin (AEI); European Social Fund (ESF) Investing in your future; European Union Next Generation EU/PRTR funds; Horizon 2020 Research and Innovation Programme of the European Union; Secretary of Universities and Research (Government of Catalonia)[PID2020-115253GA-I00 HOSTFLOWS]; Secretary of Universities and Research (Government of Catalonia)[2021-SGR-01270]; Secretary of Universities and Research (Government of Catalonia)[RYC2019-027683-I]; Secretary of Universities and Research (Government of Catalonia)[FJC2021-047124-I]; Secretary of Universities and Research (Government of Catalonia)[2021 BP 00168]; Centro Superior de Investigaciones Cientficas (CSIC) under the PIE project[20215AT016]; Program Unidad de Excelencia Maria de Maeztu[CEX2020-001058-M]; Ministry of Education, Taiwan; EC; Slovenian Research Agency[I0-0033]; Slovenian Research Agency[P1-0031]; Slovenian Research Agency[J1-8136]; Slovenian Research Agency[J1-2460]; Slovenian Research Agency[Z1-1853]; Research Council of Finland[340613]; Independent Research Fund Denmark[10.46540/2032-00022B]; European Union; University of Turku; Aarhus University; University of Iceland; Instrument Centre for Danish Astrophysics (IDA); Instituto de Astrofisica de Andalucia (IAA); NSF[AST-1911225]; NSF[AST-1911151]; NASA SWIFT grant[80NSSC19K1639]; UK Science and Technology Facilities Council; INAF; Spanish Government; Canary Islands through the European Funds for Regional Development (FEDER); US University of Florida; European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes[1103.D-0328]; European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes[105.20TF.001]; National Science Foundation[AST-1238877]; Weizmann Institute for Science; Oskar Klein Center at Stockholm University; University of Maryland, Deutsches Elektronen-Synchrotron; TANGO Consortium of Taiwan; Lawrence Livermore National Laboratories; IN2P3, France; Max-Planck Society; Max Planck Institute for Extraterrestrial Physics; Queen's University Belfast; National Central University of Taiwan; Space Telescope Science Institute; National Aeronautics and Space Administration[NNX08AR22G]; NASA Science Mission Directorate; University of Maryland, Eotvos Lorand University (ELTE); Los Alamos National Laboratory; Gordon and Betty Moore Foundation; Asteroid Terrestrial-impact Last Alert System (ATLAS) project; Asteroid Terrestrial-impact Last Alert System (ATLAS); NASA[NN12AR55G]; NASA[80NSSC18K0284]; NASA[80NSSC18K1575]; NASA[J1944/80NSSC19K0112]; NASA[HST GO-15889]; STFC[ST/T000198/1]; STFC[ST/S006109/1]; South African Astronomical Observatory |
项目资助者 | MIUR[20179ZF5KS] ; PRIN-INAF 2022 project Shedding light on the nature of gap transients: from the observations to the models ; National Natural Science Foundation of China (NSFC)[12303054] ; National Key Research and Development Program of China[2024YFA1611603] ; Yunnan Fundamental Research Projects[202401AU070063] ; International Centre of Supernovae, Yunnan Key Laboratory[202302AN360001] ; Millennium Science Initiative[ICN12_009] ; ANID through the Beca Doctorado Nacional[202221222222] ; European Research Council (ERC) under the European Union[948381] ; UK Space Agency[ST/Y000692/1] ; Spanish Ministerio de Ciencia e Innovacin (MCIN) ; Agencia Estatal de Investigacin (AEI) ; European Social Fund (ESF) Investing in your future ; European Union Next Generation EU/PRTR funds ; Horizon 2020 Research and Innovation Programme of the European Union ; Secretary of Universities and Research (Government of Catalonia)[PID2020-115253GA-I00 HOSTFLOWS, 2021-SGR-01270, RYC2019-027683-I, FJC2021-047124-I, 2021 BP 00168] ; Centro Superior de Investigaciones Cientficas (CSIC) under the PIE project[20215AT016] ; Program Unidad de Excelencia Maria de Maeztu[CEX2020-001058-M] ; Ministry of Education, Taiwan ; EC ; Slovenian Research Agency[I0-0033, P1-0031, J1-8136, J1-2460, Z1-1853] ; Research Council of Finland[340613] ; Independent Research Fund Denmark[10.46540/2032-00022B] ; European Union ; University of Turku ; Aarhus University ; University of Iceland ; Instrument Centre for Danish Astrophysics (IDA) ; Instituto de Astrofisica de Andalucia (IAA) ; NSF[AST-1911225, AST-1911151] ; NASA SWIFT grant[80NSSC19K1639] ; UK Science and Technology Facilities Council ; INAF ; Spanish Government ; Canary Islands through the European Funds for Regional Development (FEDER) ; US University of Florida ; European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes[1103.D-0328, 105.20TF.001] ; National Science Foundation[AST-1238877] ; Weizmann Institute for Science ; Oskar Klein Center at Stockholm University ; University of Maryland, Deutsches Elektronen-Synchrotron ; TANGO Consortium of Taiwan ; Lawrence Livermore National Laboratories ; IN2P3, France ; Max-Planck Society ; Max Planck Institute for Extraterrestrial Physics ; Queen's University Belfast ; National Central University of Taiwan ; Space Telescope Science Institute ; National Aeronautics and Space Administration[NNX08AR22G] ; NASA Science Mission Directorate ; University of Maryland, Eotvos Lorand University (ELTE) ; Los Alamos National Laboratory ; Gordon and Betty Moore Foundation ; Asteroid Terrestrial-impact Last Alert System (ATLAS) project ; Asteroid Terrestrial-impact Last Alert System (ATLAS) ; NASA[NN12AR55G, 80NSSC18K0284, 80NSSC18K1575, J1944/80NSSC19K0112, HST GO-15889] ; STFC[ST/T000198/1, ST/S006109/1] ; South African Astronomical Observatory |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | EDP SCIENCES S A |
出版地 | 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE |
ISSN | 0004-6361 |
URL | 查看原文 |
WOS记录号 | WOS:001434064300011 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | GAMMA-RAY BURST ; CIRCUMSTELLAR INTERACTION ; SUPERLUMINOUS SUPERNOVAE ; SN 2010JL ; PRESUPERNOVA EVOLUTION ; STELLAR MASS ; LIGHT CURVES ; EMISSION ; DUST ; SPECTRA |
EI入藏号 | 20251018017432 |
EI主题词 | Kinetic energy |
EI分类号 | 1301.1.1 Mechanics - 1301.1.2 Physical Properties of Gases, Liquids and Solids - 1301.1.3 Atomic and Molecular Physics - 1301.2.1 High Energy Physics - 1301.2.1.1 Particle Accelerators - 1301.2.1.1.1 Hadron Colliders - 1301.2.2 Nuclear Physics - 1302.1.2 Extraterrestrial Physics and Stellar Phenomena - 201.4.2 Foundry Practice - 201.5.2 Metal Forming - 201.5.2.2 Metal Forming Practice - 206.1 Processing of Plastics and Other Polymers - 701.1 Electricity: Basic Concepts and Phenomena - 711.1 Electromagnetic Waves in Different Media - 741.1 Light/Optics - 801 Chemistry - 942.1.3 Optical Instruments |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/28181 |
专题 | 南方基地 中国科学院天体结构与演化重点实验室 |
作者单位 | 1.INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy; 2.INAF-Osservatorio Astronomico d’Abruzzo, Via M. Maggini snc, 64100 Teramo, Italy; 3.European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile; 4.Millennium Institute of Astrophysics MAS, Nuncio Monsenor Sotero Sanz 100, Off. 104, Providencia, Santiago, Chile; 5.Center for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 11c, 5270 Ajdovščina, Slovenia; 6.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, PR China; 7.International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, PR China; 8.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, PR China; 9.Department of Physics and Astronomy, University of Turku, Vesilinnantie 5 20500, Finland; 10.Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, 32001 Jhongli, Taiwan; 11.Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Barcelona, Spain; 12.Institut d’Estudis Espacials de Catalunya (IEEC), 08860 Castelldefels, Barcelona, Spain; 13.Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa, Poland; 14.The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 106 91 Stockholm, Sweden; 15.Nordic Optical Telescope, Aarhus Universitet, Rambla José Ana Fernández Pérez 7, local 5, E-38711 San Antonio, Breña Baja Santa Cruz de Tenerife, Spain; 16.Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Vesilinnantie 5, 20014 Turku, Finland; 17.Astrophysics Research Institute, Liverpool John Moores University, ic2, 146 Brownlow Hill, Liverpool L3 5RF, UK; 18.Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching bei München, Germany; 19.Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK; 20.Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago, Chile; 21.Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile; 22.INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, (LC), Italy; 23.Astrophysics sub-Department, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; 24.Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark |
推荐引用方式 GB/T 7714 | Salmaso, I.,Cappellaro, E.,Tartaglia, L.,et al. The diversity of strongly interacting Type IIn supernovae[J]. ASTRONOMY & ASTROPHYSICS,2025,695. |
APA | Salmaso, I..,Cappellaro, E..,Tartaglia, L..,Anderson, J. P..,Benetti, S..,...&Valerin, G..(2025).The diversity of strongly interacting Type IIn supernovae.ASTRONOMY & ASTROPHYSICS,695. |
MLA | Salmaso, I.,et al."The diversity of strongly interacting Type IIn supernovae".ASTRONOMY & ASTROPHYSICS 695(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
The diversity of str(5452KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论