Institutional Repository System Of Yunnan Observatories, CAS
Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV | |
Cao, Zhen1,2,3; Aharonian, F.4,5; Axikegu6; Bai, Y. X.1,3; Bao, Y. W.7; Bastieri, D.8; Bi, X. J.1,2,3; Bi, Y. J.1,3; Bian, W.9; Bukevich, A. V.10; Cao, Q.11; Cao, W. Y.12; Cao, Zhe12,13; Chang, J.14; Chang, J. F.1,3,13; Chen, A. M.9; Chen, E. S.1,2,3; Chen, H. X.15; Chen, Liang16; Chen, Lin6; Chen, Long6; Chen, M. J.1,3; Chen, M. L.1,3,13; Chen, Q. H.6; Chen, S.17; Chen, S. H.1,2,3; Chen, S. Z.1,3; Chen, T. L.18; Chen, Y.7; Cheng, N.1,3; Cheng, Y. D.1,2,3; Chu, M. C.19; Cui, M. Y.14; Cui, S. W.11; Cui, X. H.20; Cui, Y. D.21,36; Dai, B. Z.17; Dai, H. L.1,3,13; Dai, Z. G.12; Danzengluobu18; Dong, X. Q.1,2,3; Duan, K. K.14; Fan, J. H.8; Fan, Y. Z.14; Fang, J.17; Fang, J. H.15; Fang, K.1,3; Feng, C. F.22; Feng, H.1; Feng, L.14; Feng, S. H.1,3; Feng, X. T.22; Feng, Y.15; Feng, Y. L.18; Gabici, S.23; Gao, B.1,3; Gao, C. D.22; Gao, Q.18; Gao, W.1,3; Gao, W. K.1,2,3; Ge, M. M.17; Ge, T. T.21,36; Geng, L. S.1,3; Giacinti, G.9; Gong, G. H.24; Gou, Q. B.1,3; Gu, M. H.1,3,13; Guo, F. L.16; Guo, J.24; Guo, X. L.6; Guo, Y. Q.1,3; Guo, Y. Y.14; Han, Y. A.25; Hannuksela, O. A.19; Hasan, M.1,2,3; He, H. H.1,2,3; He, H. N.14; He, J. Y.14; He, Y.6; Hor, Y. K.21,36; Hou, B. W.1,2,3; Hou, C.1,3; Hou X(侯贤)26![]() ![]() | |
发表期刊 | Science China: Physics, Mechanics and Astronomy
![]() |
2025-07 | |
卷号 | 68期号:7 |
DOI | 10.1007/s11433-024-2479-4 |
产权排序 | 第26完成单位 |
收录类别 | SCI ; EI |
关键词 | PWN gamma-ray UHE |
摘要 | The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21σ and 17σ at 8–100 TeV and >100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function dN/dE=(42.4±4.1)(E20TeV)−2.31±0.11exp(−E110±25TeV) TeV−1 cm−2 s−1 in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum dNe/dEe∝(Ee100TeV)−3.13±0.16exp[(−Ee373±70TeV)2] at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the γ-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption. © Science China Press 2025. |
资助项目 | National Natural Science Foundation of China[12393851]; National Natural Science Foundation of China[12393854]; National Natural Science Foundation of China[12393852]; National Natural Science Foundation of China[12393853]; National Natural Science Foundation of China[12022502]; National Natural Science Foundation of China[12205314]; National Natural Science Foundation of China[12105301]; National Natural Science Foundation of China[12261160362]; National Natural Science Foundation of China[12105294]; National Natural Science Foundation of China[U1931201]; National Natural Science Foundation of China[2024NSFJQ0060]; Thailand by the National Science and Technology Development Agency (NSTDA); National Research Council of Thailand (NRCT) under the High-Potential Research Team Grant Program[N42A650868] |
项目资助者 | National Natural Science Foundation of China[12393851, 12393854, 12393852, 12393853, 12022502, 12205314, 12105301, 12261160362, 12105294, U1931201, 2024NSFJQ0060] ; Thailand by the National Science and Technology Development Agency (NSTDA) ; National Research Council of Thailand (NRCT) under the High-Potential Research Team Grant Program[N42A650868] |
语种 | 英语 |
学科领域 | 天文学 ; 天体物理学 ; 高能天体物理学 ; 星系与宇宙学 |
文章类型 | Journal article (JA) |
出版者 | SCIENCE PRESS |
出版地 | 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA |
ISSN | 1674-7348 |
URL | 查看原文 |
WOS记录号 | WOS:001420271900001 |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary |
关键词[WOS] | SUPERNOVA REMNANT CTA1 ; PULSAR WIND NEBULAE ; X-RAY ; CRAB-NEBULA ; EMISSION ; MODEL ; EVOLUTION ; RADIO ; CONSTRAINTS ; POPULATION |
EI入藏号 | 20250717867433 |
EI主题词 | Supernovae |
EI分类号 | 1301.1.3 Atomic and Molecular Physics - 1301.1.3.1 Spectroscopy - 1301.1.5 Gravitation, Relativity and String Theory - 1301.2.1.1.1 Hadron Colliders - 1302 Astronomy - 1302.1.2 Extraterrestrial Physics and Stellar Phenomena - 1303 Astrophysics |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/28166 |
专题 | 星系类星体研究组 |
作者单位 | 1.Key Laboratory of Particle Astrophysics & Experimental Physics Division & Computing Center, institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; 2.University of Chinese Academy of Sciences, Beijing, 100049, China; 3.TIANFU Cosmic Ray Research Center, Chengdu, 610213, China; 4.Dublin institute for Advanced Studies, 31 Fitzwilliam Place, 2 Dublin, Ireland; 5.Max-Planck-Institut for Nuclear Physics, Heidelberg, 69029, Germany; 6.School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China; 7.School of Astronomy and Space Science, Nanjing University, Nanjing, 210023, China; 8.Center for Astrophysics, Guangzhou University, Guangzhou, 510006, China; 9.Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China; 10.Institute for Nuclear Research of Russian Academy of Sciences, Moscow, 117312, Russia; 11.Hebei Normal University, Shijiazhuang, 050024, China; 12.University of Science and Technology of China, Hefei, 230026, China; 13.State Key Laboratory of Particle Detection and Electronics, Beijing, China; 14.Key Laboratory of Dark Matter and Space Astronomy & Key Laboratory of Radio Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210023, China; 15.Research Center for Astronomical Computing, Zhejiang Laboratory, Hangzhou, 311121, China; 16.Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, 200030, China; 17.School of Physics and Astronomy, Yunnan University, Kunming, 650091, China; 18.Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa, 850000, China; 19.Department of Physics, The Chinese University of Hong Kong, Hong Kong; 20.Key Laboratory of Radio Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100101, China; 21.School of Physics and Astronomy (Zhuhai) & Sino-French Institute of Nuclear Engineering and Technology (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China; 22.Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China; 23.APC, Université Paris Cité, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris, 119 75205, France; 24.Department of Engineering Physics & Department of Astronomy, Tsinghua University, Beijing, 100084, China; 25.School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China; 26.Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216, China; 27.China Center of Advanced Science and Technology, Beijing, 100190, China; 28.College of Physics, Sichuan University, Chengdu, 610065, China; 29.School of Physics, Peking University, Beijing, 100871, China; 30.Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China; 31.Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; 32.Moscow Institute of Physics and Technology, Moscow, 141700, Russia; 33.Center for Relativistic Astrophysics and High Energy Physics, School of Physics and Materials Science & Institute of Space Science and Technology, Nanchang University, Nanchang, 330031, China; 34.National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China; 35.School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China; 36.School of Physics (Guangzhou), Sun Yat-sen University, Guangzhou, 510275, China |
推荐引用方式 GB/T 7714 | Cao, Zhen,Aharonian, F.,Axikegu,et al. Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV[J]. Science China: Physics, Mechanics and Astronomy,2025,68(7). |
APA | Cao, Zhen.,Aharonian, F..,Axikegu.,Bai, Y. X..,Bao, Y. W..,...&Shu, F. W..(2025).Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV.Science China: Physics, Mechanics and Astronomy,68(7). |
MLA | Cao, Zhen,et al."Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV".Science China: Physics, Mechanics and Astronomy 68.7(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Deep view of composi(3058KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论