YNAO OpenIR  > 恒星物理研究组
密近气态行星与其宿主恒星的潮汐相互作用研究
其他题名Tidal Interaction Between Close-in Gas Giant Planets and Their Host Stars
郭帅帅
学位类型博士
导师毛基荣 ; 郭建恒
2024-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词恒星自转 金属丰度 恒星-行星相互作用 动力学演化和稳定性 机器学习
摘要潮汐演化研究有助于我们了解双星系统以及恒星-行星系统的演化过程,潮汐力在密近巨行星系统的形成和演化过程中起着关键作用。系统中的轨道、自转速度和角动量等参数都会受到潮汐力的影响,从而影响密近巨行星系统的演化。有研究发现,在行星轨道收缩的过程中,角动量的转移使得热木星系统中的恒星自转速度往往高于无行星的恒星。随着观测数据的不断增加,科学家们还在一些恒星附近发现了质量非常大的热木星和褐矮星。通常来说,这些密近巨行星会受到主星非常强的潮汐作用,导致它们的演化时标通常只有几亿年。进一步研究表明,它们的轨道周期与恒星的自转周期通常呈现出同步状态,简称双重同步。在这种情况下系统的潮汐摩擦可能极为微弱甚至完全消失。然而在类太阳恒星中,磁制动作用会导致恒星持续损失角动量,从而可能使系统迅速脱离双重同步。尽管如此,仍有研究表明即使考虑到恒星磁制动的角动量损失,系统双重同步的状态也有可能长期维持。但是,双重同步在这种情况下能维持多久以及需要满足哪些条件的定量研究还很少。另外,在AI技术飞速发展的今天,机器学习与天文学的结合日益受到关注,在恒星与行星间的潮汐相互作用研究领域,机器学习的应用仍然是一个未被探索的领域。本文的研究一方面关注恒星-行星系统的演化过程,另一方面推动机器学习在这一研究领域的应用。在本论文中,我们首先采用MESA程序对恒星与行星间的潮汐相互作用进行了精细建模,考虑了比较大的恒星和行星的参数空间并模拟分析了约25000个样本。研究结果显示,在恒星的对流包层较薄的情况下,恒星的初始自转周期和行星的质量对系统的演化过程有着重要的影响。当行星被吞噬后,由于恒星磁制动较弱,行星转移给恒星的角动量仍会对恒星自转产生长期影响。对于那些对流包层较厚的恒星,由于磁制动较强,初始恒星自转速度却有着很重要的影响。对于初始自转速度较快的系统的角动量的损失较为显著,恒星磁制动相较于行星角动量转移更重要;相反,当恒星的初始自转速度较慢时,由于磁制动作用较弱,行星对恒星自转周期变化的影响则更加明显。此外,通过对WASP-19系统的模拟分析,我们注意到,与恒星距离极近的热木星可能会使得回转年代法对恒星年龄的估算造成显著的误差。我们还特别关注了恒星-行星系统中的双重同步现象,尤其是在热木星和褐矮星系统中的表现。研究结果表明,对于恒星对流包层较薄的大质量行星系统,当恒星自转速率与行星轨道速率同步时,双重同步现象更易发生。通过对观测数据施加理论限制,我们可以帮助识别那些可能处于长期双重同步状态的系统,并预测将来哪些系统可能会出现这种现象。随着潮汐质量因子测量的进一步精确化,我们预计能够发现更多处于长期双重同步状态的系统。最后,我们利用人工神经网络(ANN)对MESA模拟生成的演化曲线进行了回归分析。分析结果表明,仅需六个初始参数,就能准确预测四个演化量的演化曲线,且误差极小。这一发现突显了机器学习方法在生成演化曲线方面的高效率和准确性。此外,通过应用lightGBM模型和过采样技术,我们对恒星-行星系统样本进行了分类。我们的模型成功区分了四种主要的演化曲线类型,并以80%的准确率识别出长期处于双重同步状态的样本。
其他摘要Tidal evolution research helps us understand the evolution of binary star systems and star-planet systems. Tidal forces play a crucial role in the formation and evolution of close-in giant planet systems. Parameters such as orbits, rotation speeds, and angular momentum within these systems are influenced by tidal forces, thereby affecting the evolution of close-in giant planets. Studies have found that during the orbital contraction of a planet, the transfer of angular momentum often results in stars within hot Jupiter systems rotating faster than stars without planets. With the increasing amount of observational data, scientists have also discovered very massive hot Jupiters and brown dwarfs near some stars. Generally, these close-in giant planets experience strong tidal forces from their host stars, leading to evolutionary timescales typically of just a few hundred million years. Further research indicates that their orbital periods often synchronize with the stellar rotation periods, a state known as double synchronization. In this scenario, tidal friction in the system may become extremely weak or even disappear entirely. However, in Sun-like stars, magnetic braking causes the star to continually lose angular momentum, potentially driving the system out of double synchronization. Despite this, some studies suggest that even considering the angular momentum loss due to stellar magnetic braking, double synchronization in such systems might be maintained for long periods. Quantitative studies on how long double synchronization can last and under what conditions are still relatively scarce. Additionally, in the era of rapid advancements in AI technology, the intersection of machine learning and astronomy is gaining increasing attention. The application of machine learning in the study of tidal interactions between stars and planets remains largely unexplored. This research focuses on the evolution of star-planet systems and aims to advance the application of machine learning in this field.In this paper, we first use the MESA code to model the tidal interactions between stars and planets in detail, considering a wide parameter space for both stars and planets and simulating and analyzing approximately 25,000 samples. The results show that in cases where the star's convective envelope is relatively thin, the initial rotation period of the star and the mass of the planet significantly impact the system's evolution. When a planet is engulfed, the weak stellar magnetic braking means that the angular momentum transferred from the planet can still have a long-term effect on the star's rotation. For stars with thicker convective envelopes, the stronger magnetic braking makes the initial stellar rotation speed an important factor. In systems with fast initial rotation speeds, the loss of angular momentum is more pronounced, making stellar magnetic braking more significant than the angular momentum transfer from the planet. Conversely, when the star's initial rotation speed is slow, the weaker magnetic braking makes the planet's influence on the star's rotation period more noticeable. Additionally, through the simulation analysis of the WASP-19 system, we observed that hot Jupiters located very close to their host stars can introduce significant errors in the age estimation of stars using gyrochronology.We also specifically focused on the phenomenon of double synchronization in star-planet systems, particularly in systems involving hot Jupiters and brown dwarfs. Our research indicates that in systems with thin stellar convective envelopes and massive planets, double synchronization is more likely to occur when the star's rotation rate is synchronized with the planet's orbital rate. By applying theoretical constraints to observational data, we can identify systems that are potentially in a long-term double synchronization state and predict which systems may exhibit this phenomenon in the future. As the precision in measuring the tidal quality factor improves, we anticipate discovering more systems in long-term double synchronization. This advancement will enhance our understanding of the evolutionary processes and dynamics within star-planet systems.Finally, we employed artificial neural networks (ANN) to perform regression analysis on the evolutionary curves generated by MESA simulations. The results show that with only six initial parameters, we can accurately predict the evolutionary curves of four key evolutionary quantities, with minimal error. This finding highlights the efficiency and accuracy of machine learning methods in generating evolutionary curves.Additionally, by applying the LightGBM model and oversampling techniques, we classified the star-planet system samples. Our model successfully distinguished between four main types of evolutionary curves and identified samples in long-term double synchronization with 80% accuracy. This demonstrates the potential of machine learning in classifying and predicting the evolutionary behavior of star-planet systems.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/28045
专题恒星物理研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
郭帅帅. 密近气态行星与其宿主恒星的潮汐相互作用研究[D]. 北京. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
密近气态行星与其宿主恒星的潮汐相互作用研(60KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[郭帅帅]的文章
百度学术
百度学术中相似的文章
[郭帅帅]的文章
必应学术
必应学术中相似的文章
[郭帅帅]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 密近气态行星与其宿主恒星的潮汐相互作用研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。