YNAO OpenIR  > 太阳物理研究组
太阳低层大气小尺度增亮的辐射磁流体力学数值模拟和观测研究
其他题名Radiative Magnetohydrodynamic simulations and observations of Small scale brightenings in the low solar atmosphere
程冠冲
学位类型博士
导师林隽 ; 倪蕾
2024-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词磁重联 辐射磁流体力学 低层大气小尺度活动 磁流浮现 等离子体团不稳定性
摘要太阳低层大气是日冕加热、太阳风形成和大尺度爆发的源头和关键区域,伴随着复杂的磁场结构和高度动态的等离子体环境,时刻遍布不同种类的小尺度瞬变现象。这些现象对于理解色球的物理属性、大气中的磁场动态结构、太阳大气的异常加热,以及其他大尺度活动现象具有至关重要的意义。埃勒曼炸弹(EBs)和紫外暴(UV bursts)是太阳低层大气两种典型的小尺度增亮现象,一般认为磁流浮现触发的磁重联是导致它们形成的主要物理过程。多波段联合观测表明有一部分小尺度增亮在H$\alpha$线翼和紫外的Si IV波段都有明显的响应。本研究主要集中在埃勒曼炸弹和紫外暴形成时精细等离子体物理过程和磁场结构,以及这两种小尺度瞬变现象之间的联系。我们在开源程序NIRVANA的基础上,添加了处理光球和色球辐射转移过程的近似模型,以及可以随时间变化的电离度模块。在光球层,我们采用了简化的局部热平衡(LTE)模型和Saha方程。而在色球层,我们使用了对H I、Ca II、Mg II等在色球中起重要作用的谱线的近似辐射表及电离表。改进后的程序在保留NIRVANA自适应网格功能的同时,能够全面考虑太阳低层大气的辐射过程。不过相同的计算规模下,所需的计算时间增加了3到10倍。我们运用改进后的NIRVANA程序,基于真实重力分层的太阳低层大气,在二维空间内模拟了强磁场环境下浮现的磁场与背景磁场发生重联的物理过程。模拟显示,浮现的磁场驱动光球高密度等离子体进入磁重联区域,初期,重联电流片的温度低于8000K。随着电流片变得更垂直,密度较大的等离子体逐渐向下排出。等离子体团不稳定性导致重联区密度分布不均匀,部分低密度等离子体被加热到20,000 K以上,最高可达100,000K。湍流重联区域内,不同温度的等离子体交替出现,甚至在同一磁岛内,高温区域出现在低温区域下方。穿过磁重联区,合成的Si IV发射强度可超过10$^6$ erg s$^{-1}$ sr$^{-1}$ cm$^{-2}$ Å$^{-1}$,谱线轮廓宽度可超过100 km$\cdot s^{-1}$,H$\alpha$线轮廓展现出典型埃勒曼炸弹的特征。湍流电流片始终处于光学深度大于6.5$\times$10$^{-5}$的密集等离子体环境中。结果表明,埃勒曼炸弹和紫外暴可能形成于同一湍流磁重联过程中,为相关紫外暴提供了合理解释。使用MURaM程序在对流驱动的更真实的太阳大气和背景磁场环境下,首次展现了太阳低层大气中等离子体团不稳定性磁重联的三维精细结构,超过20,000 K的高温物质和几千K的低温等离子体在空间上交替出现。合成的H$\alpha$和Si IV波段出现明显的辐射增强,符合与埃勒曼炸弹相关的紫外暴的观测特征。三维模拟进一步证实了二维模拟结果。此外,磁重联形成的小尺度磁绳呈现出更丰富的特性,可能在向高层大气输送磁绳结构方面起关键作用。通过古德太阳望远镜(Goode Solar Telescope, 简称GST)的H$\alpha$观测,发现了一个2Mm长度的小尺度电流片中存在尺寸约150km的等离子体团结构,向下运动的最大速度为24 km$\cdot s^{-1}$,随后与重联后环相互作用,并在多波段增亮形成耀斑。非线性无力场(NLFFF)外推结果表明该活动区具有明显的磁重联位型的磁场拓扑结构。这些观测证据支持了等离子体团不稳定性磁重联存在于太阳低层大气中的观点。总而言之,我们运用升级改造的NIRVANA磁流体力学程序开展高分辨率数值模拟,研究了浮现磁场与背景磁场发生磁重联的精细物理过程和辐射特征,提出等离子体团不稳定性引起的湍流磁重联会导致埃勒曼炸弹和紫外暴这两种不同温度的亚角秒小尺度活动交替混合出现在低层大气的同一磁重联过程中;运用国际一流的辐射磁流体力学程序MURaM,开展迄今为止这类小尺度活动研究分辨率最高的三维模拟,进一步验证了二维模拟的结果和所提出的模型;最后,H$\alpha$波段的高分辨观测为太阳低层大气中等离子体团不稳定性介导的磁重联提供了清晰全面的观测证据。通过该研究工作,我们获得了自主研发的适用于太阳低层大气的辐射磁流体力学程序的模块,推动了低温、部分电离环境中磁重联精细物理过程和机制的研究,为理解太阳低层大气亚角秒小尺度多波段增亮现象的形成机制提出了新见解。
其他摘要The solar lower atmosphere is the source and key region for coronal heating, solar wind formation, and large-scale eruptions. It features complex magnetic field structures and highly dynamic plasma environments, constantly exhibiting various types of small-scale transient phenomena. These phenomena are crucial for understanding the physical properties of the chromosphere, the dynamic magnetic structures in the atmosphere, the anomalous heating of the solar atmosphere, and other large-scale activity phenomena. Ellerman bombs (EBs) and ultraviolet bursts (UV bursts) are two typical small-scale brightening phenomena in the solar lower atmosphere. They are generally believed to be primarily driven by magnetic reconnection triggered by emerging magnetic flux. Multi-wavelength coordinated observations indicate that some small-scale brightenings exhibit significant responses in both the H$\alpha$ line wing and the ultraviolet Si IV band. This study mainly focuses on the fine plasma physical processes and magnetic field structures during the formation of EBs and UV bursts, and the connections between these two small-scale transient phenomena.We enhanced the open-source NIRVANA code by incorporating an approximate model for handling radiative transfer processes in the photosphere and chromosphere, along with a time-dependent ionization module. In the photosphere, we adopted a simplified local thermodynamic equilibrium (LTE) model and the Saha equation. For the chromosphere, approximate radiation and ionization tables for crucial spectral lines such as H I, Ca II, and Mg II were utilized. The improved code retains NIRVANA's adaptive mesh capability while comprehensively considering the radiative processes in the solar lower atmosphere. However, the required computation time has increased by a factor of 3 to 10 under the same computational scale.Using the enhanced NIRVANA code, we simulated the physical process of magnetic reconnection between emerging magnetic fields and background magnetic fields in a strong magnetic field environment in two-dimensional space, based on the real gravity-stratified solar lower atmosphere. The simulation shows that the emerging magnetic field drives high-density plasma from the photosphere into the magnetic reconnection region. Initially, the temperature of the reconnecting current sheet is below 8000 K. As the current sheet becomes more vertical, high-density plasma gradually descends. Plasma instability in the reconnection region leads to an uneven density distribution, with some low-density plasma being heated to over 20,000 K, reaching temperatures as high as 100,000 K. In the turbulent reconnection region, plasma at different temperatures alternately appears, even within the same magnetic island, with high-temperature regions appearing below low-temperature regions. Crossing the magnetic reconnection region, the synthesized Si IV emission intensity can exceed 10$^6$ erg s$^{-1}$ sr$^{-1}$ cm$^{-2}$ Å$^{-1}$, and the line profile width can exceed 100 km$\cdot s^{-1}$. The H$\alpha$ line profile exhibits typical Ellerman bomb characteristics. The turbulent current sheet always exists in a dense plasma environment with an optical depth greater than 6.5$\times$10$^{-5}$. The results suggest that Ellerman bombs and ultraviolet bursts may form in the same turbulent magnetic reconnection process, providing a reasonable explanation for the related ultraviolet bursts.Utilizing the MURaM code in a more realistic convective-driven solar atmosphere and background magnetic field environment, we first revealed the three-dimensional fine structure of plasma instability-mediated magnetic reconnection in the solar lower atmosphere, where high-temperature material exceeding 20,000 K and low-temperature plasma of a few thousand K alternately appear in space. Enhanced radiation was observed in the synthesized H$\alpha$ and Si IV bands, consistent with the observational features of ultraviolet bursts associated with Ellerman bombs. Three-dimensional simulations further confirm the results of two-dimensional simulations. Additionally, small-scale magnetic flux ropes formed by magnetic reconnection exhibit richer characteristics and may play a crucial role in transporting magnetic rope structures to higher atmospheric layers.Through observations using the Goode Solar Telescope (GST) in the H$\alpha$ band, we discovered a plasmoid structure about 150 km in size within a small-scale current sheet approximately 2 Mm long. This structure moved downward with a maximum speed of km$\cdot s^{-1}$, then interacted with the post-reconnection loop region, reducing its speed and leading to brightening in multiple bands, forming a flare. Nonlinear force-free field (NLFFF) extrapolation results indicate that the active region exhibits distinct magnetic field topology characteristic of magnetic reconnection. These observational evidences support the view that plasmoid-mediated magnetic reconnection exists in the solar lower atmosphere.In summary, we conducted high-resolution numerical simulations using the upgraded NIRVANA magnetohydrodynamic code to study the fine physical processes and radiative characteristics of magnetic reconnection between emerging magnetic fields and background magnetic fields. We proposed that turbulent magnetic reconnection caused by plasmoid instability leads to the alternating mixing of Ellerman bombs and ultraviolet bursts, two different temperature sub-arcsecond small-scale activities, within the same magnetic reconnection process in the lower atmosphere. Utilizing the world-class radiation magnetohydrodynamic code MURaM, we carried out the highest resolution three-dimensional simulations to date for this type of small-scale activity, further validating the results of the two-dimensional simulations and the proposed model. Finally, high-resolution H$\alpha$ band observations provided clear and comprehensive evidence for plasmoid-mediated magnetic reconnection in the lower solar atmosphere. Through this research, we developed modules for radiation magnetohydrodynamic codes suitable for the solar lower atmosphere, advancing the study of fine physical processes and mechanisms of magnetic reconnection in low-temperature, partially ionized environments. This work provides new insights into the formation mechanisms of sub-arcsecond multi-wavelength brightening phenomena in the solar lower atmosphere.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/28037
专题太阳物理研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
程冠冲. 太阳低层大气小尺度增亮的辐射磁流体力学数值模拟和观测研究[D]. 北京. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
太阳低层大气小尺度增亮的辐射磁流体力学数(60KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[程冠冲]的文章
百度学术
百度学术中相似的文章
[程冠冲]的文章
必应学术
必应学术中相似的文章
[程冠冲]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 太阳低层大气小尺度增亮的辐射磁流体力学数值模拟和观测研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。