YNAO OpenIR  > 恒星物理研究组
红巨星锂增丰机制研究
其他题名Research on the Lithium Enrichment for Red Giant Stars
李雪峰
学位类型博士
导师李焱
2024-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词恒星演化 恒星结构 红巨星 锂丰度 混合
摘要随着日益增多的光谱巡天数据的释放,红巨星表现出的反常锂增丰行为逐渐清晰地呈现在人们面前。目前,约有百分之一的红巨星是富锂的,其锂丰度主要分布在1.5 dex到4.0 dex的范围内。尽管它们只是红巨星中的一小部分,但是它们的出现挑战了标准恒星演化理论。理清它们出现的物理原因有助于完善恒星结构和演化理论和加深对恒星的理解。目前,尚无被普遍认可的形成原因。因此,我们将对其反常锂增丰的物理机制展开研究。而对于锂丰度小于1.5 dex的红巨星,它们虽是绝大部分,但标准恒星模型在解释这些恒星时也显示出了明显的局限。因此,我们也将对这类恒星的锂丰度分布和演化行为寻求更合适的物理解释。我们的研究重点是恒星的内部混合过程。因为锂只能有效的存在于表面对流区,且锂是来源于铍的衰变。那么对恒星内部由氢燃烧生成的铍的运输将是实现恒星表面锂增丰最关键的物理过程。 借助恒星演化程序MESA,首先是构建最基本的恒星模型,在这类模型中,对流混合是唯一的混合过程。在此基础上,我们将引入一些额外的混合过程助力恒星中铍元素的运输。 红巨星支恒星的锂丰度分布可以由温盐混合解释。然而,对于红团簇恒星,它的预测结果是完全偏离观测范围的。首先,我们构建了对流模型,对流超射模型,以及温盐混合模型。结果表明这些模型在质量和金属丰度网格内预测的锂丰度与红团簇恒星的观测值之间出现了很大的偏差。接着,我们在红巨星支阶段考虑由对流包层内的湍流运动在对流边界处产生的扰动激发的重力内波。重力内波将在辐射区内传播并在氦核表面发生反射,并在氢燃烧层和对流包层之间形成谐振腔。我们将其处理为扩散过程,那么该扩散过程将在铍运输的路径上发挥作用。重力内波模型的结果显示出表面锂先衰竭,再富集而后再衰竭的行为。重力内波模型首先在红巨星支将锂丰度增加至1.5 dex附近,然后随着红团簇恒星的演化,将表面锂带入恒星内部参与反应而降低锂丰度至0.5 dex附近。模型预测的锂丰度分布与大部分用星震学方法确定的红团簇恒星的观测结果吻合,另外,重力内波模型预测红团簇恒星的锂丰度将出现随年龄增加而下降的演化行为。 对于富锂的红巨星支恒星和红团簇恒星,我们首先从对流模型出发。在第一次挖掘过程中,恒星的表面对流区会向恒星内部侵蚀,其对流边界会到达主序氢燃烧阶段留下的化学组成不均匀的区域。当对流边界处在这样的物理环境中时,应当对对流边界重新选择。我们用勒都判据对对流区重新标定,另外,在不同的演化阶段采用不同的对流边界。结果表明这种对流模型能够抑制第一次挖掘过程中表面对流区对锂的稀释作用,从而表现为富锂的特征。对星族I恒星的参数网格的建模结果表明,大多数红巨星支恒星都能借助对流混合自然演化成富锂的红巨星,低质量低金属丰度的富锂红团簇恒星也能用该模型解释。然而,该模型不能解释锂丰度异常高的恒星。此外,富锂巨星是很少的,因此,我们建议引入一些额外的锂损耗过程去匹配观测结果。 在解释红巨星的反常锂增丰行为时,其他的物理过程也应当被考虑。在重力内波模型中,我们建议引入转动混合。氦核与对流包层之间的较差转动可能会改变重力内波驱动的混合区的长度,预期混合区底部与氢燃烧壳层间距离上的微小差异将极大的影响铍的运输效率。此外,一些外部过程对恒星锂增丰的作用也是不能忽视的,我们建议引入物质吸积过程。这将带来两个方面的影响,一个是恒星的质量增长在第一次挖掘过程中对锂损耗的弱化,另一个是可能对恒星表面带来锂污染效果。这两个方面都直接或间接的实现了锂增丰。
其他摘要As increasing spectroscopic survey data are released, the anomalous lithium enrichment behaviour in giants is gradually becoming clearer. Currently, about one percent of giants are lithium-rich giants, with lithium abundances mainly distributed in the range of 1.5 dex to 4.0 dex. Although they are only a small fraction of red giant stars, their appearance challenges standard theories of stellar evolution. The physical attribution of their appearance can help refine theories of stellar structure and evolution and deepen the understanding of stars. Currently, there is no universally recognised cause for their formation. Therefore, we will investigate the physical mechanism of their anomalous lithium abundances. As for red giants with lithium abundances less than 1.5 dex, although they are the vast majority, the standard stellar models also show clear limitations in explaining these stars. Therefore, we will also seek more appropriate physical processes for the lithium abundance distribution and evolutionary behaviour of these stars. Our study focuses on the internal mixing processes in stars. This is because lithium is only effectively present in the surface convection zone and lithium is derived from the decay of beryllium. The transport of beryllium produced by hydrogen burning in the stellar interior will then be the most critical physical process to achieve lithium enrichment on the stellar surface.With the help of the stellar evolutionary programme MESA, the first step is to construct the simplest stellar models, i.e. in which convective mixing is the only mixing process. On this basis, we will introduce some extra mixing processes that may drive the transport of beryllium inside star.The distribution of lithium abundances in red giant branch stars can be explained by thermohaline mixing. However, for red clump stars, the lithium abundances predicted by the thermohaline mixing model is completely out of the observed range. First, we construct convective mixing, convective overshooting, and thermohaline mixing models. The results show a large deviation between the lithium abundance predicted by the three models in the mass and metallicity grids and the observed lithium abundances of red clump stars. We then consider internal gravity waves in the red giant branch phase, excited by perturbations generated by turbulence within the convective envelope at the convective boundary. The internal gravity waves will propagate within the radiation region and reflect off the surface of the helium core, forming a resonant cavity between the hydrogen-burning shell and the convective envelope. We treat this as a diffusion process, which will then play a role in the path of beryllium transport. The results of the internal gravity waves model show a behaviour of first enrichment and then decay of surface lithium. The internal gravity waves model first increases the lithium abundance in the tip of red giant branch to near 1.5 dex, and then decreases the lithium abundance to near 0.5 dex as the red clump star evolves, bringing the surface lithium into the interior of the star to participate in the reaction. The model-predicted lithium abundance distribution coincides with most of the observations of red clump stars determined by asteroseismic methods, and in addition, the internal gravity waves model predicts that the lithium abundances of red clump stars will show an evolutionary behaviour of decreasing with age.For lithium-rich red giant branch stars and red clump stars, we start with a convective model. During the first dredge-up, the surface convective zone of the star erodes into the stellar interior, and its convective boundary reaches regions of inhomogeneous chemical composition left by the main sequence hydrogen burning phase. When the convective boundary is in such a physical environment, the convective boundary should be re-selected. We recalibrate the convective zone with the Ledoux criterion and, in addition, use different convective boundaries at different evolutionary stages. The results show that this convective model is able to suppress the dilution of lithium by the surface convective zone during the first dredge-up phase, thus exhibiting lithium enrichment features. The results of modelling for the parameter grid of population I show that most red giant branch stars can naturally evolve into lithium-rich red giants with the help of convective mixing, and that lithium-rich red clump stars with lower masses and metallicities also be explained by this model. However, the model cannot explain stars with unusually high lithium abundances. In addition, lithium-rich giants are rare, so we propose to introduce some extra lithium depletion processes to match the observations.Other physical processes should also be considered in explaining the anomalous lithium behaviour of red giants. In the internal gravity waves model, we suggest introducing rotation-driven mixing. The differential rotation between the helium core and the convective envelope may change the length of the mixing zone driven by internal gravity waves, and it is expected that the slight difference of length between the bottom of the mixing zone and the hydrogen-burning shell will greatly affect the beryllium transport efficiency. Furthermore, the role of some external processes on stellar lithium enrichment cannot be ignored, and we propose to introduce a matter accretion process. This may have two effects, one is the weakening of stellar mass growth on lithium depletion during the first dredge-up, and the other is the possible lithium contamination effect on the stellar surface. Both of these aspects are directly or indirectly realised by lithium enrichment.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/28036
专题恒星物理研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
李雪峰. 红巨星锂增丰机制研究[D]. 北京. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
红巨星锂增丰机制研究.pdf(60KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李雪峰]的文章
百度学术
百度学术中相似的文章
[李雪峰]的文章
必应学术
必应学术中相似的文章
[李雪峰]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 红巨星锂增丰机制研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。