YNAO OpenIR  > 大样本恒星演化研究组
基于中国空间站巡天望远镜无缝光谱测量早型星大气参数
其他题名Estimating the Atmospheric Parameters of Early-type Stars from the Chinese Space Station Telescope Slitless Spectra Survey
饶加睿
学位类型硕士
导师陈雪飞
2024-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天体物理
关键词早型星 机器学习 恒星大气参数
摘要恒星光谱包含了恒星的表面温度、表面重力、质量、半径、光度、化学组成等信息,因此恒星光谱类型的差异也就反映出恒星性质的差异,迄今为止许多关于恒星本质的研究都是从光谱中得到的。利用恒星光谱测量恒星大气参数是研究恒星的重要手段之一。计划于2024年发射的中国空间站巡天望远镜(CSST)将在为期10年的巡天观测中为研究人员提供数亿颗恒星的无缝光谱。与人工处理相比,机器学习在处理海量数据方面具有更高的效率和稳定性。随着CSST大规模巡天项目的进行,即将产出数以亿计的无缝光谱数据,为我们测量恒星大气参数并对观测目标进行快速分类提供了海量数据。因此,我的学位论文主要围绕着“基于CSST无缝光谱测量早型星大气参数”这一课题展开。我们基于CSST无缝光谱的设计指标和机器学习算法Stellar LAbel Machine(SLAM),对早型星的恒星参数(有效温度Teff >15000 K)进行了研究。我们使用Potsdam-Wolf-Rayet(POWR)合成光谱库作为训练样本。我们同时使用了POWR模拟光谱库和哈勃太空望远镜(HST)观测得到的Next Generation Spectrum Library(NGSL)测试了机器学习结果的可靠性。在没有任何噪声的全波长光谱的理想情况下,有效温度Teff的平均相对偏差(取绝对值后)的平均值为800 K(2.7%),表面重力log g的偏差为0.11 c.g.s(3.5%)。当使用来自POWR库的光谱作为训练和测试样本时,我们将样本按CSST的无缝光谱不同波段分为具有不同分辨率的三个部分(2550 A至4050 A的分辨率R=287;4050 A至6300 A为R=232;6300 A至10000 A为R=207),并模拟实际观测情况(向测试样本中添加了径向速度RV和星际消光AV的影响),分别进行四阶交叉验证测试,得出了模型在不同情况下对有效温度Teff和表面重力log g的测量精度,并给出了测量误差。我们还考虑了实际观测设备可能出现的像素偏移情况,研究了测试样本中光谱发生微小偏移时对测量结果精度的影响。我们发现,在偏移5 A的情况下,Teff的平均相对偏差为1100 K(3.6%),log g为0.13 c.g.s(4.2%);在偏移10 A的情况下,Teff的平均相对偏差为1300 K(4.3%),log g为0.15 c.g.s(5.1%)。此外,我们还使用NGSL的实测光谱数据作为测试样本,得出了Teff和log g的测量精度,并与前人使用模板匹配的经典恒星参数测量方法得出的结果进行了比较,平均相对偏差可以控制在4000 K(15%)以内。这些结果表明,利用基于SLAM方法的机器学习模型,我们可以从CSST无缝光谱巡天的海量数据中获得相对准确的早型星恒星大气参数。
其他摘要The stellar spectrum can reflect the star's surface temperature, surface gravity, mass, radius, luminosity, chemical composition, and so on. The profile of the star spectrum mainly depends on the physical properties and chemical composition of the star. Therefore, the difference in star spectrum types also reflects the properties of the star. Until now, differences and research on the nature of stars have been obtained from spectra. Measurement of stellar atmosphere parameters is the basis for scientific research using stellar spectra. The China Space Station Telescope (CSST), scheduled to be launched in 2024, will provide researchers with slitless spectra of hundreds of millions of stars within a 10-year survey. Compared with manual processing, machine learning has higher efficiency and stability in processing massive data. With the progress of the CSST large-scale sky survey project, hundreds of millions of slitless spectral data will be produced, providing a basis for us to measure stellar atmosphere parameters and quickly classify observation targets. Therefore, my dissertation revolves around the measurement of atmospheric parameters of early-type stars based on CSST slitless spectra. Based on the design indicators of the CSST slitless spectrum and the machine learning algorithm Stellar LAbel Machine (SLAM), we studied the stellar parameters of early-type stars (effective temperature Teff >15000 K). We used the Potsdam-Wolf-Rayet (POWR) synthetic spectral library as training samples. We used both the POWR simulated spectral library and the Next Generation Spectrum Library (NGSL) observed by the Hubble Space Telescope (HST) to test the reliability of the machine learning results. In the ideal case of a full-wavelength spectrum without any noise, the average relative deviation (after taking the absolute value) of the effective temperature Teff is 800 K (2.7%), and the deviation of surface gravity log g is 0.11 c.g.s (3.5%). Using spectra from the POWR library as samples, we divided the samples into three parts with different resolutions (2550 A to 4050 A (resolution R = 287); 4050 A to 6300 A (R = 232); 6300 A to 10000 A (R = 207)) according to different bands of CSST's slitless spectrum and simulated the actual observation situation by adding the effects of radial velocity RV and interstellar extinction AV to the testing sample for 4-fold cross-validation. We obtained the test accuracy of the model for effective temperature Teff and surface gravity log g under different conditions, and gave the measurement error. We also considered possible pixel shifts in the actual observation equipment and studied the impact on the accuracy of the test results when slight shifts in the spectrum occurred in the testing sample. We find that at the shift of 5 A, the average relative deviation of Teff is 1100 K (3.6%), and the deviation of log g is 0.13 c.g.s (4.2%); in the case of shifting 10 A, the average relative deviation of Teff is 1300 K (4.3%), the deviation of log g is 0.15 c.g.s (5.1%). In addition, we also used the observed spectra data of NGSL as the testing sample to obtain the measurement accuracy of Teff and log g, and compared them with the parameters, which previous researchers measured by the classical method. The deviation of stellar parameters was less than 4000 K (15%). These results show that using a machine learning model based on the SLAM method, we can obtain relatively accurate atmospheric parameters of early-type stars from the massive data of the CSST Slitless Spectroscopic Survey.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/28030
专题大样本恒星演化研究组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
饶加睿. 基于中国空间站巡天望远镜无缝光谱测量早型星大气参数[D]. 北京. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于中国空间站巡天望远镜无缝光谱测量早型(60KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[饶加睿]的文章
百度学术
百度学术中相似的文章
[饶加睿]的文章
必应学术
必应学术中相似的文章
[饶加睿]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于中国空间站巡天望远镜无缝光谱测量早型星大气参数.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。