YNAO OpenIR  > 选址与日冕观测组
日冕仪杂散光修正及应用研究
其他题名Research on correction and application of stray light in coronagraphs
沙飞扬
学位类型硕士
导师刘煜
2024-07-01
学位授予单位中国科学院大学
学位授予地点北京
学位专业天文技术与方法
关键词日冕 日冕仪 杂散光 散射 图像配准
摘要日冕是太阳大气的最外层,由稀薄、高度电离的高温等离子体组成。通常,日冕亮度只有太阳光球的百万分之一量级,导致它大部分时间都被淹没在日光中不可见。唯一的例外是在日全食期间,月球完全阻挡了来自光球层的光,使地球大气散射也由此变得很弱,有机会观测到日冕。日冕仪是一种用于在非日全食时期观测日冕的特殊望远镜。内掩式日冕仪在望远镜内部用掩体遮挡住太阳的像,并进行严格的杂散光抑制,才有机会在高海拔地区观测到日冕。日冕仪内部的杂散光可分为固定和可变两种,可变杂散光主要由物镜表面尘埃颗粒的散射引起,它会随着时间和环境洁净度的变化而变化,在日冕图像上覆盖一层可变的散射背景,不仅掩盖暗弱的日冕结构,更影响日冕图像的强度定标。虽然可以通过频繁清洁物镜来降低这一散射背景,但从长远角度看这会损伤超光滑抛光的物镜表面,引起额外的杂散光。 本工作是对尘埃杂散光的强度修正。基于丽江日冕仪设计了一套实验方案,获取物镜表面尘埃分布与其在日冕图像中产生的散射背景,建立经验模型描述二者关系,并根据该模型对含散射背景的日冕图像进行强度修正。此外,在数据处理过程中,为解决日冕图像之间的对齐问题,设计并实现了一种日冕图像配准算法。本工作不仅是日冕图像强度定标的重要步骤,也能确定日冕图像的日心坐标系,极大提高了数据的科学价值。 区别于前人对尘埃杂散光的理论模型,本工作首次通过实测数据得到散射背景与物镜尘埃之间的定量关系,并建立了两个经验模型。第一个双参数模型假设物镜表面尘埃均匀分布,导出了一个各向同性的散射背景,仅与日心距r和散射点 总强度I有关;第二个三参数模型考虑了散射点在物镜表面的角分布,利用图像的扇形分割统计得到散射点对各个方向散射背景的贡献,在模型中新增了散射背景方向角参数theta,能够模拟出各向异性的散射背景。利用模型模拟出一幅散射背景,并从原始日冕图像中扣除,实现了日冕图像的强度修正,对内日冕区域效果显著,修正精度大于90%。这有效提高了日冕数据质量,使得原本相对暗弱的日冕结构变得更加突出和清晰,有助于发现CME、喷流等日冕活动现象,更是日冕数据高精度定标的重要步骤,能为未来大型地基日冕仪的日冕磁场常规测量提供可靠数据。 为解决数据处理中的日冕图像对齐问题,结合统计相关与特征点匹配法将日冕图像与天基SDO/AIA标准图像配准。经过预处理、极坐标变换、分块相关、特征点提取、特征点匹配和仿射变换几个步骤后,将待配准图像更新,不断迭代上述步骤,最终完成了两图像的粗配准。该算法不仅适用于本实验数据,更能广泛应用于日冕设备中,同设备日冕图像配准后二者的Pearson相关系数达到0.999以上,不同设备之间的配准能够获取日心坐标系,实现多设备日冕数据的协同观测。 未来,我们将继续推进本研究工作,在更高海拔的稻城观测站开展日冕仪实验,以获取更精确的散射背景模型;将上述配准模型改进,增大不同设备之间的配准精度,精确获取日心坐标系。此外,我们也将致力于大口径日冕仪的研制,并基于中外合作开展太阳爆发活动、太阳磁场测量的相关研究。
其他摘要The corona is the outermost layer of the Sun's atmosphere, consisting of thin, highly ionized, and hot plasma. The maximum brightness of the corona is only a few millionths of that of the photosphere, making it obscured in daylight and invisible most of the time. The only exception is during total solar eclipses when the Moon completely blocks light from the photosphere, and Earth's atmospheric scattering is weak enough for us to have a chance to observe the corona directly. The coronagraph is a specialized telescope used to observe the solar corona outside of total solar eclipses. An internally-occultated coronagraph uses an occulter inside the telescope to block the image of the Sun and provides strict suppression of stray light, enabling observations of the corona at high altitudes. The stray light inside the coronagraph can be categorized as fixed and variable. Variable stray light changes over time and environmental cleanliness, while fixed stray light remains constant. Variable stray light is primarily caused by the scattering of dust particles on the surface of the objective lens. It results in the formation of a variable scattering background on the coronal image, which changes with the level of dust. This not only obscures the faint coronal structure but also impacts the intensity calibration of the coronal image. This scattering background can be reduced by frequent cleaning of the objective lens. However, in the long run, this can damage the ultra-smooth polished objective lens and cause additional stray light. This work is to correct the intensity of dust stray light. Based on the Lijiang coronagraph, we designed an experimental scheme to obtain information about the dust on the surface of the objective lens and its scattering background in the coronal images, and established two empirical models to describe the relationship between the scattering background and the dust. Based on these two models, we corrected the coronal images containing scattering background. In the data processing, to solve the alignment problem between the images, a new algorithm was designed and implemented for registering the coronal images. This work is not only an important step in the intensity calibration of coronal images but also enables the determination of the Heliocentric coordinates of coronal images, which greatly enhances the scientific value of the data. Different from previous theoretical models of dust stray light, we have for the first time obtained a quantitative relationship between the scattering background and objective dust through measured data, and established two empirical models. The first two-parameter model assumes a uniform distribution of dust on the surface of the objective lens and derives an isotropic scattering background. This background is only related to the heliocentric distance r and the total intensity of the scattering points I. The second three-parameter model takes into account the angular distribution of the scattering points. It utilizes the statistics of the sector segmentation of the image to determine the contribution of the scattering points to the scattering background in each direction. This model adds a new directional angle parameter of the scattering background theta to simulate the relationship between the dust and the scattering background, enabling the simulation of anisotropic scattering background. Correction of the coronal image is achieved by simulating a scattering background using the model and subtracting it from the original coronal image. This has a significant effect on the intensity correction of the inner coronal region, with a correction accuracy greater than 90%. This work effectively enhances the quality of coronal data, making the originally relatively weak coronal structure more prominent and clear, contributing to the discovery of coronal activity phenomena such as CMEs and jets. This step is also crucial in the high-precision calibration of coronal data, providing reliable data for the routine measurement of coronal magnetic fields in future large-scale ground-based coronagraphs. To solve the alignment problem of coronal images in data processing, statistical correlation and feature point matching methods are combined to register coronal images with space-based SDO/AIA standard images. After several preprocessing steps like polar coordinate transformation, segmentation, correlation, feature point extraction, feature point matching, and affine transformation, the image to be registered is updated. Continuously iterating the above steps, the rough registration of the two images was finally completed. This algorithm is not only applicable to the experimental data, but can also be widely applied to coronal devices. After registering coronal images with the same device, the Pearson correlation coefficient between the two reaches 0.999 or above. Registration between different devices can obtain the heliocentric coordinate system, achieving collaborative observation of multi device coronal data. In the future, we will continue to advance this research. Conduct coronagraph experiments at higher altitude Daocheng Observatory to obtain more accurate scattering background models. Improve the above registration model to increase the registration accuracy between different devices and accurately obtain the heliocentric coordinate system. In addition, we will also be committed to the development of large-diameter coronagraphs and conduct research on solar eruptions and solar magnetic field measurements based on Sino-foreign cooperation.
学科领域天文学
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/28016
专题选址与日冕观测组
作者单位中国科学院云南天文台
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
沙飞扬. 日冕仪杂散光修正及应用研究[D]. 北京. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
日冕仪杂散光修正及应用研究.pdf(60KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[沙飞扬]的文章
百度学术
百度学术中相似的文章
[沙飞扬]的文章
必应学术
必应学术中相似的文章
[沙飞扬]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 日冕仪杂散光修正及应用研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。