YNAO OpenIR  > 天文技术实验室
High accuracy deep learning wavefront sensing under high-order turbulence
Liu DM(刘冬明)1,2; Liu H(刘辉)1; Jin ZY(金振宇)1
发表期刊天文技术与仪器(英文)/Astronomical Techniques and Instruments
2024-11
卷号1期号:06页码:316-324
DOI10.61977/ati2024052
分类号P111 ; P111.44
产权排序第1完成单位
收录类别CSCD
摘要We explore an end-to-end wavefront sensing approach based on deep learning, which aims to deal with the high-order turbulence and the discontinuous aberration caused by optical system obstructions commonly encountered in real-world ground-based telescope observations. We have considered factors such as the entrance pupil wavefront containing high-order turbulence and discontinuous aberrations due to obstruction by the secondary mirror and spider,realistically simulating the observation conditions of ground-based telescopes. By comparing with the Marechal criterion(0.075λ), we validate the effectiveness of the proposed approach. Experimental results show that the deep learning wavefront sensing approach can correct the distorted wavefront affect by high-order turbulence to close to the diffraction limit. We also analyze the limitations of this approach, using the direct zonal phase output method, where the residual wavefront stems from the fitting error. Furthermore, we have explored the wavefront reconstruction accuracy of different noise intensities and the central obstruction ratios. Within a noise intensity range of 1% –1.9%,the root mean square error(RMSE) of the residual wavefront is less than Marechal criterion. In the range of central obstruction ratios from 0.0 to 0.3 commonly used in ground-based telescopes, the RMSE of the residual wavefront is greater than 0.039λ and less than 0.041λ. This research provides an efficient and valid wavefront sensing approach for high-resolution observation with ground-based telescopes. 
资助项目National Natural Science Foundation of China (NSFC) [U2031140]
项目资助者National Natural Science Foundation of China (NSFC) [U2031140]
语种英语
学科领域天文学 ; 天文学其他学科 ; 计算机科学技术 ; 人工智能
ISSN1672-7975
URL查看原文
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27913
专题天文技术实验室
作者单位1.Yunnan Observatories,Chinese Academy of Sciences;
2.University of Chinese Academy of Sciences
第一作者单位中国科学院云南天文台
推荐引用方式
GB/T 7714
Liu DM,Liu H,Jin ZY. High accuracy deep learning wavefront sensing under high-order turbulence[J]. 天文技术与仪器(英文)/Astronomical Techniques and Instruments,2024,1(06):316-324.
APA 刘冬明,刘辉,&金振宇.(2024).High accuracy deep learning wavefront sensing under high-order turbulence.天文技术与仪器(英文)/Astronomical Techniques and Instruments,1(06),316-324.
MLA 刘冬明,et al."High accuracy deep learning wavefront sensing under high-order turbulence".天文技术与仪器(英文)/Astronomical Techniques and Instruments 1.06(2024):316-324.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
High accuracy...er t(1275KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘冬明]的文章
[刘辉]的文章
[金振宇]的文章
百度学术
百度学术中相似的文章
[刘冬明]的文章
[刘辉]的文章
[金振宇]的文章
必应学术
必应学术中相似的文章
[刘冬明]的文章
[刘辉]的文章
[金振宇]的文章
相关权益政策
暂无数据
收藏/分享
文件名: High accuracy...er turbulence_Dongming Liu.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。