YNAO OpenIR  > 南方基地
Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates
Guo, Xiaotong1; Fang, Guanwen1; Feng HC(封海成)2; Zhang, Rui1
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2024-12-01
卷号24期号:12
DOI10.1088/1674-4527/ad95d7
产权排序第2完成单位
收录类别SCI
关键词methods: data analysis galaxies: fundamental parameters galaxies: star formation
摘要The large-scale imaging survey will produce massive photometric data in multi-bands for billions of galaxies. Defining strategies to quickly and efficiently extract useful physical information from this data is mandatory. Among the stellar population parameters for galaxies, their stellar masses and star formation rates (SFRs) are the most fundamental. We develop a novel tool, Multi-Layer Perceptron for Predicting Galaxy Parameters (MLP-GaP), that uses a machine learning (ML) algorithm to accurately and efficiently derive the stellar masses and SFRs from multi-band catalogs. We first adopt a mock data set generated by the Code Investigating GALaxy Emission (CIGALE) for training and testing data sets. Subsequently, we used a multi-layer perceptron model to build MLP-GaP and effectively trained it with the training data set. The results of the test performed on the mock data set show that MLP-GaP can accurately predict the reference values. Besides MLP-GaP has a significantly faster processing speed than CIGALE. To demonstrate the science-readiness of the MLP-GaP, we also apply it to a real data sample and compare the stellar masses and SFRs with CIGALE. Overall, the predicted values of MLP-GaP show a very good consistency with the estimated values derived from spectral energy distribution fitting. Therefore, the capability of MLP-GaP to rapidly and accurately predict stellar masses and SFRs makes it particularly well-suited for analyzing huge amounts of galaxies in the era of large sky surveys.
资助项目National Nature Science Foundation of China[12303017]; National Nature Science Foundation of China[12203096]; Anhui Provincial Natural Science Foundation[2308085QA33]; China Manned Space Project
项目资助者National Nature Science Foundation of China[12303017, 12203096] ; Anhui Provincial Natural Science Foundation[2308085QA33] ; China Manned Space Project
语种英语
学科领域天文学 ; 星系与宇宙学 ; 恒星与银河系
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:001376598800001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]CONVOLUTIONAL NEURAL-NETWORKS ; DATA RELEASE ; AUTOMATIC CLASSIFICATION ; PHOTOMETRIC REDSHIFTS ; POPULATION SYNTHESIS ; MAIN-SEQUENCE ; EVOLUTION ; ULTRAVIOLET ; EXTINCTION ; COSMOLOGY
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27852
专题南方基地
作者单位1.Institute of Astronomy and Astrophysics, Anqing Normal University, Anqing 246133, China;
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China
推荐引用方式
GB/T 7714
Guo, Xiaotong,Fang, Guanwen,Feng HC,et al. Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2024,24(12).
APA Guo, Xiaotong,Fang, Guanwen,封海成,&Zhang, Rui.(2024).Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,24(12).
MLA Guo, Xiaotong,et al."Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 24.12(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Multi-layer Perceptr(2972KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Xiaotong]的文章
[Fang, Guanwen]的文章
[封海成]的文章
百度学术
百度学术中相似的文章
[Guo, Xiaotong]的文章
[Fang, Guanwen]的文章
[封海成]的文章
必应学术
必应学术中相似的文章
[Guo, Xiaotong]的文章
[Fang, Guanwen]的文章
[封海成]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP)_ Stellar Masses and Star Formation Rates.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。