Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates | |
Guo, Xiaotong1; Fang, Guanwen1; Feng HC(封海成)2![]() | |
发表期刊 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS
![]() |
2024-12-01 | |
卷号 | 24期号:12 |
DOI | 10.1088/1674-4527/ad95d7 |
产权排序 | 第2完成单位 |
收录类别 | SCI |
关键词 | methods: data analysis galaxies: fundamental parameters galaxies: star formation |
摘要 | The large-scale imaging survey will produce massive photometric data in multi-bands for billions of galaxies. Defining strategies to quickly and efficiently extract useful physical information from this data is mandatory. Among the stellar population parameters for galaxies, their stellar masses and star formation rates (SFRs) are the most fundamental. We develop a novel tool, Multi-Layer Perceptron for Predicting Galaxy Parameters (MLP-GaP), that uses a machine learning (ML) algorithm to accurately and efficiently derive the stellar masses and SFRs from multi-band catalogs. We first adopt a mock data set generated by the Code Investigating GALaxy Emission (CIGALE) for training and testing data sets. Subsequently, we used a multi-layer perceptron model to build MLP-GaP and effectively trained it with the training data set. The results of the test performed on the mock data set show that MLP-GaP can accurately predict the reference values. Besides MLP-GaP has a significantly faster processing speed than CIGALE. To demonstrate the science-readiness of the MLP-GaP, we also apply it to a real data sample and compare the stellar masses and SFRs with CIGALE. Overall, the predicted values of MLP-GaP show a very good consistency with the estimated values derived from spectral energy distribution fitting. Therefore, the capability of MLP-GaP to rapidly and accurately predict stellar masses and SFRs makes it particularly well-suited for analyzing huge amounts of galaxies in the era of large sky surveys. |
资助项目 | National Nature Science Foundation of China[12303017]; National Nature Science Foundation of China[12203096]; Anhui Provincial Natural Science Foundation[2308085QA33]; China Manned Space Project |
项目资助者 | National Nature Science Foundation of China[12303017, 12203096] ; Anhui Provincial Natural Science Foundation[2308085QA33] ; China Manned Space Project |
语种 | 英语 |
学科领域 | 天文学 ; 星系与宇宙学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA |
ISSN | 1674-4527 |
URL | 查看原文 |
WOS记录号 | WOS:001376598800001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | CONVOLUTIONAL NEURAL-NETWORKS ; DATA RELEASE ; AUTOMATIC CLASSIFICATION ; PHOTOMETRIC REDSHIFTS ; POPULATION SYNTHESIS ; MAIN-SEQUENCE ; EVOLUTION ; ULTRAVIOLET ; EXTINCTION ; COSMOLOGY |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/27852 |
专题 | 南方基地 |
作者单位 | 1.Institute of Astronomy and Astrophysics, Anqing Normal University, Anqing 246133, China; 2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China |
推荐引用方式 GB/T 7714 | Guo, Xiaotong,Fang, Guanwen,Feng HC,et al. Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2024,24(12). |
APA | Guo, Xiaotong,Fang, Guanwen,封海成,&Zhang, Rui.(2024).Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,24(12). |
MLA | Guo, Xiaotong,et al."Multi-layer Perceptron for Predicting Galaxy Parameters (MLP-GaP): Stellar Masses and Star Formation Rates".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 24.12(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Multi-layer Perceptr(2972KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论