YNAO OpenIR  > 大样本恒星演化研究组
Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning
Zhou, Xingchen1,2; Gong, Yan1,2,3; Zhang, Xin1,2; Li, Nan1,2; Meng, Xian-Min1,2; Chen, Xuelei1,2,4; Wen, Run5,6; Han YK(韩云坤)7; Zou, Hu1; Zheng, Xian Zhong5,6; Yang, Xiaohu8,9; Guo, Hong10; Zhang, Pengjie8,9
发表期刊ASTROPHYSICAL JOURNAL
2024-12-01
卷号977期号:1
DOI10.3847/1538-4357/ad8bbf
产权排序第7完成单位
收录类别SCI
摘要Chinese Space Station Telescope (CSST) has the capability to conduct a slitless spectroscopic survey simultaneously with a photometric survey. The spectroscopic survey will measure slitless spectra, potentially providing more accurate estimations of galaxy properties, particularly redshifts, compared to using broadband photometry. CSST relies on these accurate redshifts to use baryon acoustic oscillations (BAOs) and other probes to constrain the cosmological parameters. However, due to the low resolution and signal-to-noise ratio of slitless spectra, measurement of redshifts is significantly challenging. In this study, we employ a Bayesian neural network (BNN) to assess the accuracy of redshift estimations from slitless spectra anticipated to be observed by CSST. The simulation of slitless spectra is based on real observational data from the early data release of the Dark Energy Spectroscopic Instrument (DESI-EDR) and the 16th data release of the Baryon Oscillation Spectroscopic Survey (BOSS-DR16), combined with the 9th data release of the DESI Legacy Survey (DESI LS DR9). The BNN is constructed employing a transfer learning technique, by appending two Bayesian layers after a convolutional neural network, leveraging the features learned from the slitless spectra and corresponding redshifts. Our network can provide redshift estimates along with corresponding uncertainties, achieving an accuracy of sigma( NMAD) = 0.00063, outlier percentage eta = 0.92%, and weighted mean uncertainty E=0.00228 . These results successfully fulfill the requirement of sigma( NMAD) < 0.005 for BAO and other studies employing CSST slitless spectroscopic surveys.
资助项目MOST divided by National Key Research and Development Program of China (NKPs)https://doi.org/10.13039/501100012166[2023YFA1607800]; MOST divided by National Key Research and Development Program of China (NKPs)https://doi.org/10.13039/501100012166[2022YFA1602902]; National Key R&D Program of China[YSBR-062]; CAS Project for Young Scientists in Basic Research[CMS-CSST-2021-A02]; CAS Project for Young Scientists in Basic Research[CMS-CSST-2021-A04]; China Manned Space Project[2020SKA0110100]; Ministry of Science and Technology of China[12120101003]; Ministry of Science and Technology of China[12373010]; National Natural Science Foundation of China (NSFC)[XDB0550100]; Strategic Priority Research Program of the Chinese Academy of Science
项目资助者MOST divided by National Key Research and Development Program of China (NKPs)https://doi.org/10.13039/501100012166[2023YFA1607800, 2022YFA1602902] ; National Key R&D Program of China[YSBR-062] ; CAS Project for Young Scientists in Basic Research[CMS-CSST-2021-A02, CMS-CSST-2021-A04] ; China Manned Space Project[2020SKA0110100] ; Ministry of Science and Technology of China[12120101003, 12373010] ; National Natural Science Foundation of China (NSFC)[XDB0550100] ; Strategic Priority Research Program of the Chinese Academy of Science
语种英语
学科领域天文学 ; 恒星与银河系 ; 计算机科学技术 ; 人工智能
文章类型Article
出版者IOP Publishing Ltd
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0004-637X
URL查看原文
WOS记录号WOS:001370080500001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]PHOTOMETRIC REDSHIFT ; NEURAL-NETWORKS ; PARAMETER-ESTIMATION ; SIMULATIONS ; COSMOLOGY ; GALAXIES
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27842
专题大样本恒星演化研究组
作者单位1.National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Beijing 100101, People's Republic of China; [email protected];
2.Science Center for China Space Station Telescope, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Beijing 100101, People's Republic of China;
3.University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China;
4.Centre for High Energy Physiscs, Peking University, Beijing 100871, People's Republic of China;
5.Purple Mountain Observatory, Chinese Academy of Sciences, 10 Yuanhua Road, Nanjing 210023, People's Republic of China;
6.School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei 230026, People's Republic of China;
7.Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming 650216, People's Republic of China;
8.Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China;
9.Tsung-Dao Lee Institute and Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai 201210, People's Republic of China;
10.Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, People's Republic of China
推荐引用方式
GB/T 7714
Zhou, Xingchen,Gong, Yan,Zhang, Xin,et al. Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning[J]. ASTROPHYSICAL JOURNAL,2024,977(1).
APA Zhou, Xingchen.,Gong, Yan.,Zhang, Xin.,Li, Nan.,Meng, Xian-Min.,...&Zhang, Pengjie.(2024).Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning.ASTROPHYSICAL JOURNAL,977(1).
MLA Zhou, Xingchen,et al."Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning".ASTROPHYSICAL JOURNAL 977.1(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Accurately Estimatin(4935KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Xingchen]的文章
[Gong, Yan]的文章
[Zhang, Xin]的文章
百度学术
百度学术中相似的文章
[Zhou, Xingchen]的文章
[Gong, Yan]的文章
[Zhang, Xin]的文章
必应学术
必应学术中相似的文章
[Zhou, Xingchen]的文章
[Gong, Yan]的文章
[Zhang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Accurately Estimating Redshifts from CSST Slitless Spectroscopic Survey Using Deep Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。