YNAO OpenIR  > 恒星物理研究组
k-𝜔模型下sdB恒星与WR恒星的对流超射研究
其他题名Convective Overshooting of Subdwarf B Stars and Walf-Rayet Stars with the k-ω Model
李志
学位类型博士
导师李焱
2024
学位授予单位中国科学院大学
学位授予地点北京
培养单位中国科学院云南天文台
学位专业天体物理
关键词恒星演化 恒星结构 sdB恒星 大质量恒星 超射混合
摘要在恒星的结构与演化中,对流区域的范围和相关混合过程仍不完全了解。对流核的大小与延伸影响恒星中心可用核燃料的量和恒星内部的化学组分,进而影响它的光度和寿命等。通过完全的流体动力学方法处理对流超射是一个非常复杂的过程,不同的物理量会得到不同的超射范围。观测研究以及理论和计算模型不断让我们理解并完善这些重要物理过程,帮助我们更好地了解恒星的内部结构。对于中心氦燃烧的恒星,对流核和超射混合的情况存在较大的不确定性。在恒星模型中,采用不同的超射模型或半对流方法,导致不同的恒星结构和恒星演化图景。𝑘 − 𝜔 模型是完全基于流体动力学方程和湍流理论的恒星对流模型,不仅可以处理对流不稳定区域,还能用于超射区域。我们将𝑘−𝜔 模型嵌入MESA(Modules of Experiments in Stellar Astrophysics)程序,对 B 型热亚矮星(Hot subdwarf B stars, sdB)演化中的超射混合进行了研究。结果显示,其对流核的发展可以分为三个阶段。当辐射温度梯度 ∇rad 向外单调减小时,对流核的质量单调增加,且超射混合呈指数型衰减,这与Herwig (2000) 中的结果相似。当对流边界附近辐射温度梯度 ∇rad 的极小值小于绝热温度梯度∇ad 时,对流核会出现分裂形成两个对流区。当中心氦丰度下降到约 𝑌c ≈ 0.45时,对流壳层外边界的质量 𝑀sc 能过达到 0.2 𝑀⊙。这接近于通过星震学分析得到的较年轻sdB 恒星(0.22 ∼ 0.28 𝑀⊙)的中心对流核质量。在氦燃烧的最后阶段𝑌c < 0.2,对流核会发生两到三次“喘息脉动”,将额外的氦注入对流核中,并增加sdB 恒星的寿命。最终,中心混合区的质量𝑀mixed 可以达到 0.303 𝑀⊙。我们的g 模式sdB 模型拥有较高的氧丰度,其中心具有更高的氧含量(约为 80%)。通过星震学分析得到的富氧白矮星,可以作为“喘息脉动”存在的证据。大质量恒星中心存在更大的对流核,这对于验证对流超射有着不可忽视的作用。同时,星风质量损失和转动混合对大质量恒星的演化也起着重要影响。为了研究大质量恒星对流核外的超射混合和转动混合过程,我们计算了初始质量从 25 到 120 𝑀⊙,且初始金属丰度 𝑍 = 0.02 的转动和不转动恒星模型。转动模型在零龄主序赋予 𝑣ini/𝑣crit = 0.4 的统一自转速度。所有模型从零龄主序开始演化,直到中心碳燃烧结束。使用𝑘 − 𝜔 模型的恒星拥有更大的对流核和更延展的主序带宽度。当初始质量 𝑀ini ≥ 60 𝑀⊙ 时,主序带宽度会开始收缩,质量特别大的恒星(𝑀ini ≥ 100 𝑀⊙)可以在主序的晚期阶段演化到更高的有效温度。对于非转动模型,当超射区域的氢燃烧产物暴露在恒星表面时,出现明显的表面氮增丰。而转动模型由于转动混合的作用,在主序早期就出现了表面氮增丰现象。同时,转动混合还使形成沃尔夫-拉叶星(Wolf-Rayet stars, WR)的初始质量下限减小到约 36 𝑀⊙。转动和非转动 WR 恒星模型的最终质量范围,分别为 9.5 − 17.5 𝑀⊙ 和 10 − 23 𝑀⊙。在转动模型中,C/N 比值在对流核外缓慢下降至 0.1 以下,从而形成更宽更平滑的化学元素过渡区域。此外,其过渡型的 WNC(富 N、C 型 WR)恒星寿命为 1 − 4 × 104 年,比非旋转模型长约一个数量级。因此,转动模型拥有更高的 WNC 恒星占比,转动和非转动模型的 WNC/WR 比率分别为 0.059 和 0.004。WNC 恒星的质量由内部混合过程和中心氦燃烧阶段中的最大对流核质量决定,其质量范围约为 15 − 36 𝑀⊙。转动和非转动的单星演化模型,能够很好地解释光度 log 𝐿/𝐿⊙ > 5.3 的 WR 演化后期恒星(WNC、WC 和 WO型)的形成。然而,采用简单的统一化星风质量损失率,不能解释观测数据中的低光度(即低质量)WNC 和 WC 恒星的形成。
其他摘要In the stellar structure and evolution, the extension of convective regions and the associated mixing processes are still not fully understood. The size and extent of the convective core affect the amount of nuclear fuel available in the center of the star, as well as the chemical composition of the star, and ultimately its luminosity and lifetime. Handling convective overshooting using a fully hydrodynamical approach is a very complicated process, with different physical quantities having different overshooting distances. Observational studies, as well as theoretical and computational models, continue to help us understand and refine these important physical processes, improving our understanding of the internal structure of stars. With the increasing amount of observational data, we have effective means of verifying the complex turbulent convective motions within the interiors of stars. For core He-burning stars, there are considerable uncertainty regarding mixing in convective core and overshooting beyond it. Different approaches, such as convective overshooting, semi-convection, etc., have been adopted in stellar models, leading to different stellar structures and scenarios for stellar evolution. The 𝑘−𝜔 model is a stellar convection model that is based fully on fluid dynamics equations and turbulence theory. It can not only handle convective unstable zone but also the overshooting regions.We incorporated the 𝑘 − 𝜔 model into the Modules of Experiments in Stellar Astrophysics (MESA) to investigate overshooting mixing in the evolution of hot subdwarf B (sdB) stars. Our results show that the development of the convective core can be divided into three stages. When the radiative temperature gradient ∇rad decreases monotonically outward, the mass of the convective core increases monotonically, and the overshoot mixing shows an exponential decay similar to that in Herwig (2000). When the minimum value of the radiative temperature gradient ∇rad near the convective boundary is less than the adiabatic temperature gradient ∇ad, the convective core splits repeatedly, forming two convective regions. When the central helium abundance decreases to about 𝑌c ≈ 0.45, the mass at the boundary of convective shell 𝑀sc can reach about 0.2 𝑀⊙. This is close to the central convective core mass of younger sdB stars (0.22 ∼ 0.28 𝑀⊙) derived by asteroseismology analysis. In the final stage of helium burning when 𝑌c < 0.2, the convective core undergoes two to three ”core breathing pulses” injecting additional helium into the convective core and extending the lifetime of the sdB star. Finally, the mass of the central mixing region 𝑀mixed can raise to 0.303 𝑀⊙. Our g-mode sdB model has a high oxygen abundance, with a central oxygen content of about 80 per cent. Oxygen-rich white dwarfs deduced from asteroseismology can serve as evidence for the existence of breathing pulses.Massive stars have a large convective core in their center, which plays a significant role in validating convective overshooting. At the same time, stellar wind mass loss and rotational induced mixing also have important effects on the evolution of massive stars. To study the processes of overshoot mixing and rotational mixing outside the convective core of massive stars, we calculated both rotating and non-rotating stellar models with initial masses ranging from 25 to 120 𝑀⊙ at 𝑍 = 0.02. The rotating models have a uniform initial rotation rate of 𝑣ini/𝑣crit = 0.4 at zero-age main sequence (ZAMS). All models evolve from ZAMS until the end of central carbon burning.Stellar models that use the 𝑘 − 𝜔 model provide a larger convective core and a extend main-sequence width. The shrinking of the MS width occurs for stars with 𝑀ini ≥ 60 𝑀⊙, and the most massive stars (𝑀ini ≥ 100 𝑀⊙) can evolve to higher temperature at the late MS stage. For non-rotating models, there are a significant increase in surface nitrogen abundance when hydrogen burning products in the overshoot- ing region are exposed to the surface by stellar wind. However, the rotating models with rotational mixing display a wide range of intermediate nitrogen enrichment in the early MS. Meanwhile, the rotational mixing reduced the minimum initial mass of the Wolf-Rayet (WR) stars to about 36 𝑀⊙. The final mass range for the rotating and non-rotating WR models is 9.5 − 17.5 𝑀⊙ and 10 − 23 𝑀⊙, respectively. In rotating models, the C/N ratio slowly decreases to below 0.1 outside the convective core, creating a wider and smoother chemical elements transition region. In addition, the transitional WNC star lifetime is 1 − 4 × 104 yr, about one order of magnitude longer than that of non-rotating models. Therefore, the rotating models have a higher proportion of WNC stars, with a WNC/WR ratio of 0.059 and 0.004 for rotating and non-rotating models, respectively. The mass range of WNC stars is determined by internal mixing processes and the maximum con- vective core mass in core He-burning phase, and is about 15 − 36 𝑀⊙. Both rotating and non-rotating single star evolutionary calculations predict the formation of advanced WR stars (WNC, WC and WO stars) with a luminosity of log 𝐿/𝐿⊙ > 5.3. But simple unified mass-loss rates for stellar winds cannot explain the formation of observed low-luminosity (and thus low-mass) WNC and WC stars.
学科领域天文学 ; 恒星与银河系
学科门类理学 ; 理学::天文学
页数0
语种中文
文献类型学位论文
条目标识符http://ir.ynao.ac.cn/handle/114a53/27835
专题恒星物理研究组
推荐引用方式
GB/T 7714
李志. k-𝜔模型下sdB恒星与WR恒星的对流超射研究[D]. 北京. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
k-𝜔模型下sdB恒星与WR恒星的对流(29590KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李志]的文章
百度学术
百度学术中相似的文章
[李志]的文章
必应学术
必应学术中相似的文章
[李志]的文章
相关权益政策
暂无数据
收藏/分享
文件名: k-𝜔模型下sdB恒星与WR恒星的对流超射研究.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。