Institutional Repository System Of Yunnan Observatories, CAS
A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning | |
Xia, Yuehan1,2; Su, Yang1; Liu H(刘辉)3; Yu, Wenhui1,2; Li, Zhentong1; Chen, Wei1; Huang, Yu1; Gan, Weiqun1 | |
发表期刊 | SOLAR PHYSICS |
2024-11 | |
卷号 | 299期号:11 |
DOI | 10.1007/s11207-024-02399-4 |
产权排序 | 第3完成单位 |
收录类别 | SCI |
关键词 | X-ray bursts Solar flares Machine learning Hard X-ray imaging |
摘要 | Most solar hard X-ray (HXR) imagers in the past and current solar missions obtain X-ray images via Fourier transform imaging technology, which requires proper imaging algorithms to reconstruct images from spatially-modulated or temporally-modulated signals. A variety of algorithms have been developed during the last 50 years for the characteristics of respective instruments. In this work, we present a new imaging algorithm developed based on deep learning for the Hard X-ray Imager (HXI) onboard the Advanced Space-based Solar Observatory (ASO-S) and the preliminary test results of the algorithm with both simulated data and observations. We first created a training dataset by obtaining modulation data from simulated HXR images of single, double and loop-shaped sources, respectively, and the patterns of HXI sub-collimators. Then, we introduced machine-learning algorithm to develop a pattern-based deep learning network model: HXI_DLA, which can directly produce an image from modulation counts. After training the model with simple sources, we tested DLA for simple sources, extended sources, and double sources for imaging dynamic range. Finally, we compared CLEAN and DLA images reconstructed from HXI observations of three flares. Overall, these imaging tests revealed that the current HXI_DLA method produces comparable image result to those from the widely used imaging method CLEAN. In some cases, DLA images are even slightly better. Besides, HXI_DLA is super fast for imaging and parameter-free. Although this is only the first step towards a fully developed and practical DLA method, the tests have shown the potential of deep learning in the field of solar hard X-ray imaging. |
资助项目 | National Key R&D Program of China[2022YFF0503002]; National Natural Science Foundation of China (NSFC)[12333010]; National Natural Science Foundation of China (NSFC)[11873027]; National Natural Science Foundation of China (NSFC)[U2031140]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0560000]; Strategic Priority Research Program on Space Science; Chinese Academy of Sciences[XDA15320000] |
项目资助者 | National Key R&D Program of China[2022YFF0503002] ; National Natural Science Foundation of China (NSFC)[12333010, 11873027, U2031140] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0560000] ; Strategic Priority Research Program on Space Science ; Chinese Academy of Sciences[XDA15320000] |
语种 | 英语 |
学科领域 | 天文学 ; 太阳与太阳系 |
文章类型 | Article |
出版者 | SPRINGER |
出版地 | VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS |
ISSN | 0038-0938 |
URL | 查看原文 |
WOS记录号 | WOS:001355183400001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | ACCELERATION ; PIXON |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/27681 |
专题 | 天文技术实验室 |
作者单位 | 1.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023, Nanjing, China; 2.School of Astronomy and Space Science, University of Science and Technology of China, Hefei, 230026, People’s Republic of China; 3.Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650216, People’s Republic of China |
推荐引用方式 GB/T 7714 | Xia, Yuehan,Su, Yang,Liu H,et al. A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning[J]. SOLAR PHYSICS,2024,299(11). |
APA | Xia, Yuehan.,Su, Yang.,刘辉.,Yu, Wenhui.,Li, Zhentong.,...&Gan, Weiqun.(2024).A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning.SOLAR PHYSICS,299(11). |
MLA | Xia, Yuehan,et al."A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning".SOLAR PHYSICS 299.11(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A New Solar Hard X-r(2815KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xia, Yuehan]的文章 |
[Su, Yang]的文章 |
[刘辉]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xia, Yuehan]的文章 |
[Su, Yang]的文章 |
[刘辉]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xia, Yuehan]的文章 |
[Su, Yang]的文章 |
[刘辉]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论