Institutional Repository System Of Yunnan Observatories, CAS
An Efficient Method for Batch Derivation of Detached Eclipsing Binary Parameters: Analysis of 34,907 OGLE Systems | |
Wang JL(王锦良)1,2; Ding X(丁旭)1,2,3,4; Liu, Wei5; Yu LH(于立欢)1,2; Xu C(徐冲)1,2; Ji KF(季凯帆)1,2,3,4 | |
发表期刊 | ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES |
2024-11-01 | |
卷号 | 275期号:1 |
DOI | 10.3847/1538-4365/ad833c |
产权排序 | 第1完成单位 |
收录类别 | SCI |
摘要 | Detached eclipsing binary (EB) systems are crucial for measuring the physical properties of stars that evolve independently. Large-scale time-domain surveys have released a substantial number of light curves for detached EBs. Utilizing the Physics of Eclipsing Binaries package in conjunction with Markov Chain Monte Carlo (MCMC) methods for batch parameter derivation poses significant computational challenges, primarily due to the high computational cost and time demands. Therefore, this paper develops an efficient method based on the neural network model and the stochastic variational inference method (denoted NNSVI) for the rapid derivation of parameters for detached EBs. For studies involving more than three systems, the NNSVI method significantly outperforms techniques that combine MCMC methods in terms of parameter inference speed, making it highly suitable for the batch derivation of large numbers of light curves. We efficiently derived parameters for 34,907 detached EBs, selected from the Optical Gravitational Lensing Experiment catalog and located in the Galactic bulge, using the NNSVI method. A catalog detailing the parameters of these systems is provided. Additionally, we compared the parameters of two double-lined detached EBs with those from previous studies and found the estimated parameters to be essentially identical. |
资助项目 | the Natural Science Foundation of China[12103088]; the Natural Science Foundation of China[12433009]; Natural Science Foundation of China; Gaia Data Processing and Analysis Consortium |
项目资助者 | the Natural Science Foundation of China[12103088, 12433009] ; Natural Science Foundation of China ; Gaia Data Processing and Analysis Consortium |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | IOP Publishing Ltd |
出版地 | TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND |
ISSN | 0067-0049 |
URL | 查看原文 |
WOS记录号 | WOS:001348920600001 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | VALUE-ADDED CATALOG ; VARIATIONAL INFERENCE ; MAGELLANIC-CLOUD ; STARS ; III. ; PERFORMANCE ; DISTANCE ; RADII ; GAIA ; V. |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/27679 |
专题 | 天文技术实验室 大样本恒星演化研究组 南方基地 中国科学院天体结构与演化重点实验室 |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People's Republic of China; [email protected]; 2.University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; 3.Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P.O. Box 110, 650216 Kunming, People's Republic of China; 4.Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, People's Republic of China; 5.College of Physics and Electronic Engineering, Xingtai University, Xingtai 054001, People's Republic of China |
第一作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Wang JL,Ding X,Liu, Wei,et al. An Efficient Method for Batch Derivation of Detached Eclipsing Binary Parameters: Analysis of 34,907 OGLE Systems[J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,2024,275(1). |
APA | 王锦良,丁旭,Liu, Wei,于立欢,徐冲,&季凯帆.(2024).An Efficient Method for Batch Derivation of Detached Eclipsing Binary Parameters: Analysis of 34,907 OGLE Systems.ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,275(1). |
MLA | 王锦良,et al."An Efficient Method for Batch Derivation of Detached Eclipsing Binary Parameters: Analysis of 34,907 OGLE Systems".ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 275.1(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
An Efficient Method (4143KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[王锦良]的文章 |
[丁旭]的文章 |
[Liu, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[王锦良]的文章 |
[丁旭]的文章 |
[Liu, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[王锦良]的文章 |
[丁旭]的文章 |
[Liu, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论