YNAO OpenIR  > 南方基地
Mesiri: Mephisto Early Supernovae Ia Rapid Identifier
Zhang, Lun-Wei1; Wang ZY(王振宇)2; Liu, De-Zi1; Fang, Yuan1; Kumar, Brajesh1; Chen, Bing-Qiu1; Er, Xin-Zhong1; Liu, Xiao-Wei1
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
2024-11-01
卷号24期号:11
DOI10.1088/1674-4527/ad7e68
产权排序第2完成单位
收录类别SCI
关键词techniques: photometric telescopes surveys
摘要The early time observations of Type Ia supernovae (SNe Ia) play a crucial role in investigating and resolving longstanding questions about progenitor stars and the explosion mechanisms of these events. Colors of supernovae (SNe) in the initial days after the explosion can help differentiate between different types of SNe. However, the use of true color information to identify SNe Ia at the early-time explosion is still in its infancy. The Multi-channel Photometric Survey Telescope (Mephisto) is a photometric survey telescope equipped with three CCD cameras, capable of simultaneously imaging the same patch of sky in three bands (u, g, i or v, r, z), yielding real-time colors of astronomical objects. In this paper, we introduce a new time-series classification tool named Mephisto Early Supernovae Ia Rapid Identifier (Mesiri), which, for the first time, utilizes real-time color information to distinguish early-time SNe Ia from core-collapse supernovae. Mesiri is based on the deep learning approach and can achieve an accuracy of 96.75% +/- 0.79%, and AUC of 98.87% +/- 0.53% in case of single epoch random observation before the peak brightness. These values reach towards perfectness if additional data points on several night observations are considered. The classification with real-time color significantly outperforms that with pseudo-color, especially at the early time, i.e., with only a few points of observations. The BiLSTM architecture shows the best performance compared to others that have been tested in this work.
资助项目Yunnan University Development Plan for World-Class University; Yunnan University Development Plan for World-Class Astronomy Discipline; Science & Technology Champion Project[202005AB160002]; Yunnan Revitalization Talent Support Program[202105AE160021]; Yunnan Revitalization Talent Support Program[202305AT350002]; Yunnan Fundamental Research Projects[202301AU070006]
项目资助者Yunnan University Development Plan for World-Class University ; Yunnan University Development Plan for World-Class Astronomy Discipline ; Science & Technology Champion Project[202005AB160002] ; Yunnan Revitalization Talent Support Program[202105AE160021, 202305AT350002] ; Yunnan Fundamental Research Projects[202301AU070006]
语种英语
学科领域天文学 ; 恒星与银河系
文章类型Article
出版者NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
出版地20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA
ISSN1674-4527
URL查看原文
WOS记录号WOS:001342254200001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]ZTF EARLY OBSERVATIONS ; SURVEY TELESCOPE ; NEURAL-NETWORKS ; LIGHT-CURVE ; K-CORRECTIONS ; SN 2011FE ; TIME ; CLASSIFICATION ; EXCESS ; EXPLOSION
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27661
专题南方基地
作者单位1.South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650500, China; [email protected], [email protected];
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China
推荐引用方式
GB/T 7714
Zhang, Lun-Wei,Wang ZY,Liu, De-Zi,et al. Mesiri: Mephisto Early Supernovae Ia Rapid Identifier[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2024,24(11).
APA Zhang, Lun-Wei.,王振宇.,Liu, De-Zi.,Fang, Yuan.,Kumar, Brajesh.,...&Liu, Xiao-Wei.(2024).Mesiri: Mephisto Early Supernovae Ia Rapid Identifier.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,24(11).
MLA Zhang, Lun-Wei,et al."Mesiri: Mephisto Early Supernovae Ia Rapid Identifier".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 24.11(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Mesiri_ Mephisto Ear(3002KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Lun-Wei]的文章
[王振宇]的文章
[Liu, De-Zi]的文章
百度学术
百度学术中相似的文章
[Zhang, Lun-Wei]的文章
[王振宇]的文章
[Liu, De-Zi]的文章
必应学术
必应学术中相似的文章
[Zhang, Lun-Wei]的文章
[王振宇]的文章
[Liu, De-Zi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Mesiri_ Mephisto Early Supernovae Ia Rapid Identifier.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。