YNAO OpenIR  > 其他
PDRs4All II. JWST's NIR and MIR imaging view of the Orion Nebula.
Habart, Emilie1; Peeters, Els2,3,4; Berné, Olivier5; Trahin, Boris1; Canin, Amélie5; Chown, Ryan2,3; Sidhu, Ameek2,3; Putte, Dries Van De6; Alarcón, Felipe7; Schroetter, Ilane5; Dartois, Emmanuel8; Vicente, Sílvia9; Abergel, Alain1; Bergin, Edwin A.7; Bernard, Jeronimo10,11; Boersma, Christiaan12; Bron, Emeric13; Cami, Jan2,3,4; Cuadrado, Sara14; Dicken, Daniel15; Elyajouri, Meriem1; Fuente, Asunción16; Goicoechea, Javier R.14; Gordon, Karl D.6,17; Issa, Lina5; Joblin, Christine5; Kannavou, Olga1; Khan, Baria2,3,4; Lacinbala, Ozan18; Languignon, David13; Gal, Romane Le19,20; Maragkoudakis, Alexandros12; Meshaka, Raphael1,13; Okada, Yoko21; Onaka, Takashi22,23; Pasquini, Sofia2; Pound, Marc W.7; Robberto, Massimo6,24; Röllig, Markus25,26; Schefter, Bethany2,3; Schirmer, Thiébaut1,27; Tabone, Benoit1; Tielens, Alexander G. G. M.28,29; Wolfire, Mark G.29; Zannese, Marion1; Ysard, Nathalie1; Miville, Marc-Antoine30; Aleman, Isabel31; Allamandola, Louis12,32; Auchettl, Rebecca33; Baratta, Giuseppe Antonio34; Bejaoui, Salma12; Bera, Partha P.12,32; Black, John H.27; Boulanger, Francois35; Bouwman, Jordy36,37,38; Brandl, Bernhard28,39; Brechignac, Philippe8; Brünken, Sandra40; Buragohain, Mridusmita41; Burkhardt, Andrew42; Candian, Alessandra43; Cazaux, Stéphanie44; Cernicharo, Jose14; Chabot, Marin45; Chakraborty, Shubhadip46,47; Champion, Jason5; Colgan, Sean W. J.12; Cooke, Ilsa R.48; Coutens, Audrey5; Cox, Nick L.J.10,11; Demyk, Karine5; Meyer, Jennifer Donovan49; Foschino, Sacha5; García, Pedro50; Gavilan, Lisseth12; Gerin, Maryvonne51; Gottlieb, Carl A.52; Guillard, Pierre53,54; Gusdorf, Antoine35,51; Hartigan, Patrick55; He JH(何金华)56,57,58; Herbst, Eric59; Hornekaer, Liv60; Jäger, Cornelia61; Janot, Eduardo62; Kaufman, Michael63; Kemper, Francisca64,65,66; Kendrew, Sarah67; Kirsanova, Maria S.68; Klaassen, Pamela15; Kwok, Sun69; Labiano, Álvaro70; Lai, Thomas S.-Y.71; Lee, Timothy J.(12,†); Lefloch, Bertrand72; Petit, Franck Le13; Li, Aigen73; Linz, Hendrik74; Mackie, Cameron J.75,76; Madden, Suzanne C.28; Mascetti, Joëlle77; McGuire, Brett A.49,78; Merino, Pablo79; Micelotta, Elisabetta R.80; Misselt, Karl81; Morse, Jon A.82; Mulas, Giacomo5,34; Neelamkodan, Naslim83; Ohsawa, Ryou84; Omont, Alain51; Paladini, Roberta85; Palumbo, Maria Elisabetta34; Pathak, Amit86; Pendleton, Yvonne J.87; Petrignani, Annemieke88; Pino, Thomas8; Puga, Elena67; Rangwala, Naseem12; Rapacioli, Mathias89; Ricca, Alessandra4,12; Roman, Julia6; Roser, Joseph4,12; Roueff, Evelyne13; Rouillé, Gaël61; Salama, Farid12; Sales, Dinalva A.90; Sandstrom, Karin91; Sarre, Peter92; Sciamma, Ella12; Sellgren, Kris93; Shenoy, Sachindev S.94; Teyssier, David50; Thomas, Richard D.95; Togi, Aditya96; Verstraete, Laurent1; Witt, Adolf N.97; Wootten, Alwyn49; Zettergren, Henning95; Zhang, Yong98; Zhang, Ziwei E.99; Zhen, Junfeng100
发表期刊ASTRONOMY & ASTROPHYSICS
2024-05-14
卷号685
DOI10.1051/0004-6361/202346747
产权排序第57完成单位
收录类别SCI ; EI
关键词infrared: ISM photon-dominated region (PDR) ISM: clouds
摘要Context. The James Webb Space Telescope (JWST) has captured the most detailed and sharpest infrared (IR) images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photodissociation region (PDR). Aims. We investigate the fundamental interaction of far-ultraviolet (FUV) photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Methods. We utilized NIRCam and MIRI to obtain sub-arcsecond images over similar to 150'' and 42'' in key gas phase lines (e.g., P alpha a, Br alpha, [FeII] 1.64 mu m, H-2 1-0 S(1) 2.12 mu m, 0-0 S(9) 4.69 mu m), aromatic and aliphatic infrared bands (aromatic infrared bands at 3.3-3.4 mu m, 7.7, and 11.3 mu m), dust emission, and scattered light. Their emission are powerful tracers of the IF and DF, FUV radiation field and density distribution. Using NIRSpec observations the fractional contributions of lines, AIBs, and continuum emission to our NIRCam images were estimated. A very good agreement is found for the distribution and intensity of lines and AIBs between the NIRCam and NIRSpec observations. Results. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of similar to 0.1-1'' (similar to 0.0002-0.002 pc or similar to 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. The spatial distribution of the AIBs reveals that the PDR edge is steep and is followed by an extensive warm atomic layer up to the DF with multiple ridges. A complex, structured, and folded H-0/H-2 DF surface was traced by the H-2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar as our observations show that a 3D terraced geometry is required to explain the JWST observations. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate. Conclusions. This study offers an unprecedented dataset to benchmark and transform PDR physico-chemical and dynamical models for the JWST era. A fundamental step forward in our understanding of the interaction of FUV photons with molecular clouds and the role of FUV irradiation along the star formation sequence is provided.
资助项目University of Western Ontario; Institute for Earth and Space Exploration; Canadian Space Agency; Natural Sciences and Engineering Research Council of Canada; CNES APR program; Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU; INC/INP; CEA; CNES; Spanish MCINN[PID2019-106110GB-I00]; Dutch Science Agency; NASA Ames Research Center through the San Jose State University Research Foundation[80NSSC22M0107]; Deutsche Forschungsgemeinschaft (DFG)[184018867]; JSPS Bilateral Program[120219939]; Department of Science and Technology -SERB via Core Research Grant (DST-CRG)[SERB-CRG/2021/000907]; Institutes of Eminence (IoE) incentive grant; BHU[incentive/2021-22/32439]; Banaras Hindu University, Varanasi; Association of Universities for Research in Astronomy, Inc., under NASA[NAS 5-03127]; NASA Space Telescope Science Institute[1288]; DST; CAS; Swedish Research Council[202003437]
项目资助者University of Western Ontario ; Institute for Earth and Space Exploration ; Canadian Space Agency ; Natural Sciences and Engineering Research Council of Canada ; CNES APR program ; Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU ; INC/INP ; CEA ; CNES ; Spanish MCINN[PID2019-106110GB-I00] ; Dutch Science Agency ; NASA Ames Research Center through the San Jose State University Research Foundation[80NSSC22M0107] ; Deutsche Forschungsgemeinschaft (DFG)[184018867] ; JSPS Bilateral Program[120219939] ; Department of Science and Technology -SERB via Core Research Grant (DST-CRG)[SERB-CRG/2021/000907] ; Institutes of Eminence (IoE) incentive grant ; BHU[incentive/2021-22/32439] ; Banaras Hindu University, Varanasi ; Association of Universities for Research in Astronomy, Inc., under NASA[NAS 5-03127] ; NASA Space Telescope Science Institute[1288] ; DST ; CAS ; Swedish Research Council[202003437]
语种英语
学科领域天文学
文章类型Article
出版者EDP SCIENCES S A
出版地17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE
ISSN0004-6361
URL查看原文
WOS记录号WOS:001271220100001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]NEUTRAL ATOMIC PHASES ; PHOTODISSOCIATION REGIONS ; PHYSICAL CONDITIONS ; LINE EMISSION ; SUBMILLIMETER OBSERVATIONS ; INTERSTELLAR-MEDIUM ; REFLECTION NEBULAE ; MOLECULAR-HYDROGEN ; VELOCITY FEATURES ; IONIZATION FRONTS
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27642
专题其他
作者单位1.Institut d’Astrophysique Spatiale, Université Paris-Saclay, CNRS, Bâtiment121, 91405 Orsay Cedex, France;
2.Department of Physics & Astronomy, The University of Western Ontario, London ON N6A 3K7, Canada;
3.Institute for Earth and Space Exploration, The University of Western Ontario, London ON N6A 3K7, Canada;
4.Carl Sagan Center, SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, CA 94043, USA;
5.Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III – Paul Sabatier, CNRS, CNES, 9 Av. du colonel Roche, 31028 Toulouse Cedex 04, France;
6.Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA;
7.Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA;
8.Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, Bâtiment 520, 91405 Orsay Cedex, France;
9.Instituto de Astrofísica e Ciências do Espaço, Tapada da Ajuda, Edifício Leste, 2° Piso, 1349-018 Lisboa, Portugal;
10.ACRI-ST, Centre d’Études et de Recherche de Grasse (CERGA), 10 Av. Nicolas Copernic, 06130 Grasse, France;
11.INCLASS Common Laboratory, 10 Av. Nicolas Copernic, 06130 Grasse, France;
12.NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000, USA;
13.LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, 92190 Meudon, France;
14.Instituto de Física Fundamental (CSIC), Calle Serrano 121-123, 28006, Madrid, Spain;
15.UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK;
16.Observatorio Astronómico Nacional (OAN,IGN), Alfonso XII, 3, 28014 Madrid, Spain;
17.Sterrenkundig Observatorium, Universiteit Gent, Gent, Belgium;
18.Quantum Solid State Physics (QSP), Celestijnenlaan 200d – box 2414, 3001 Leuven, Belgium;
19.Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, CNRS, 38000 Grenoble, France;
20.Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, 38406 Saint-Martin d’Hères, France;
21.I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany;
22.Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan;
23.Department of Physics, Faculty of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan;
24.Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA;
25.Physikalischer Verein – Gesellschaft für Bildung und Wissenschaft, Robert-Mayer-Straße 2, 60325 Frankfurt am Main, Germany;
26.Institut für Angewandte Physik. Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany;
27.Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, S439 92 Onsala, Sweden;
28.Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands;
29.Astronomy Department, University of Maryland, College Park, MD 20742, USA;
30.AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France;
31.Instituto de Física e Química, Universidade Federal de Itajubá, Av. BPS 1303, Pinheirinho, 37500-903, Itajubá, MG, Brazil;
32.Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA;
33.Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Victoria, Australia;
34.INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy;
35.Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France;
36.Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA;
37.Department of Chemistry, University of Colorado, Boulder, CO 80309, USA;
38.Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT), University of Colorado, Boulder, CO 80303, USA;
39.Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands;
40.Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands;
41.School of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India;
42.Department of Physics, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA;
43.Anton Pannekoek Institute for Astronomy (API), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
44.Delft University of Technology, Delft, The Netherlands;
45.Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, Université Paris-Saclay, CNRS/IN2P3, Bâtiment 104, 91405 Orsay Cedex, France;
46.Department of Chemistry, GITAM school of Science, GITAM Deemed to be University, Bangalore, India;
47.Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France;
48.Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada;
49.National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA 22903, USA;
50.European Space Astronomy Centre (ESAC/ESA), Villanueva de la Cañada, 28692 Madrid, Spain;
51.Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, 75014 Paris, France;
52.Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA;
53.Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France;
54.Institut Universitaire de France, Ministère de l’Enseignement Supérieur et de la Recherche, 1 rue Descartes, 75231 Paris Cedex 05, France;
55.Department of Physics and Astronomy, Rice University, Houston, TX 77005-1892, USA;
56.Yunnan Observatories, Chinese Academy of Sciences, 396 Yang-fangwang, Guandu District, Kunming 650216, PR China;
57.Chinese Academy of Sciences South America Center for Astronomy, National Astronomical Observatories, CAS, Beijing 100101, PR China;
58.Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile;
59.Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904, USA;
60.InterCat and Dept. Physics and Astron., Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark;
61.Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany;
62.Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 05509-090 São Paulo, SP, Brazil;
63.Department of Physics and Astronomy, San José State University, San Jose, CA 95192, USA;
64.Institut de Ciencies de l’Espai (ICE, CSIC), Can Magrans, s/n, 08193 Bellaterra, Barcelona, Spain;
65.ICREA, Pg. Llu í is Company 23, 05010 Barcelona, Spain;
66.Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain;
67.European Space Agency, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA;
68.Institute of Astronomy, Russian Academy of Sciences, 119017, Pyatnitskaya str., 48, Moscow, Russia;
69.Department of Earth, Ocean, & Atmospheric Sciences, University of British Columbia, V6T 1Z4, Canada;
70.Telespazio UK for ESA, ESAC, 28692 Villanueva de la Cañada, Madrid, Spain;
71.IPAC, California Institute of Technology, Pasadena, CA, USA;
72.LAB, Université de Bordeaux, CNRS, 33615 Pessac, France;
73.Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
74.Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany;
75.Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
76.Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California – Berkeley, Berkeley, CA, USA;
77.Institut des Sciences Moléculaires, CNRS, Université de Bordeaux, 33405 Talence, France;
78.Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
79.Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain;
80.Department of Physics, PO Box 64, 00014 University of Helsinki, Finland;
81.Steward Observatory, University of Arizona, Tucson, AZ 85721-0065, USA;
82.AstronetX PBC, 55 Post Rd W FL 2, Westport, CT 06880, USA;
83.Department of Physics, College of Science, United Arab Emirates University (UAEU), Al-Ain, 15551, USA;
84.National Astronomical Observatory of Japan, National Institutes of Natural Science, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan;
85.California Institute of Technology, IPAC, 770, S. Wilson Ave., Pasadena, CA 91125, USA;
86.Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India;
87.University of Central Florida, Orlando, FL 32765, USA;
88.Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands;
89.Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 31062 Toulouse, France;
90.Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande, 96201-900, Rio Grande, RS, Brazil;
91.Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
92.School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, UK;
93.Astronomy Department, Ohio State University, Columbus, OH 43210 USA;
94.Space Science Institute, 4765 Walnut St., R203, Boulder, CO 80301, USA;
95.Department of Physics, Stockholm University, 10691 Stockholm, Sweden;
96.Department of Physics, Texas State University, San Marcos, TX 78666, USA;
97.Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606, USA;
98.School of Physics and Astronomy, Sun Yat-sen University, 2 Da Xue Road, Tangjia, Zhuhai 519000, Guangdong Province, PR China;
99.Star and Planet Formation Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako, Saitama 351-0198, Japan;
100.Institute of Deep Space Sciences, Deep Space Exploration Laboratory, Hefei 230026, PR China
推荐引用方式
GB/T 7714
Habart, Emilie,Peeters, Els,Berné, Olivier,et al. PDRs4All II. JWST's NIR and MIR imaging view of the Orion Nebula.[J]. ASTRONOMY & ASTROPHYSICS,2024,685.
APA Habart, Emilie.,Peeters, Els.,Berné, Olivier.,Trahin, Boris.,Canin, Amélie.,...&Zhen, Junfeng.(2024).PDRs4All II. JWST's NIR and MIR imaging view of the Orion Nebula..ASTRONOMY & ASTROPHYSICS,685.
MLA Habart, Emilie,et al."PDRs4All II. JWST's NIR and MIR imaging view of the Orion Nebula.".ASTRONOMY & ASTROPHYSICS 685(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
PDRs4All II. JWST's (31379KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Habart, Emilie]的文章
[Peeters, Els]的文章
[Berné, Olivier]的文章
百度学术
百度学术中相似的文章
[Habart, Emilie]的文章
[Peeters, Els]的文章
[Berné, Olivier]的文章
必应学术
必应学术中相似的文章
[Habart, Emilie]的文章
[Peeters, Els]的文章
[Berné, Olivier]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PDRs4All II. JWST's NIR and MIR imaging view of the Orion Nebula..pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。