The application of machine learning in tidal evolution simulation of star-planet systems | |
Guo SS(郭帅帅)1,2,3,4; Guo JH(郭建恒)1,2,3,4; Ji KF(季凯帆)1,5; Liu H(刘辉)1,5; Xing L(邢磊)1,2,3,4 | |
发表期刊 | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
2024-08-27 | |
卷号 | 533期号:2页码:2199-2212 |
DOI | 10.1093/mnras/stae1870 |
产权排序 | 第1完成单位 |
收录类别 | SCI ; EI |
关键词 | methods: statistical planet-star interactions stars: low-mass stars: rotation |
摘要 | With the release of a large amount of astronomical data, an increasing number of close-in hot Jupiters have been discovered. Calculating their evolutionary curves using star-planet interaction models presents a challenge. To expedite the generation of evolutionary curves for these close-in hot Jupiter systems, we utilized tidal interaction models established on mesa to create 15 745 samples of star-planet systems and 7500 samples of stars. Additionally, we employed a neural network (Multilayer Perceptron - MLP) to predict the evolutionary curves of the systems, including stellar effective temperature, radius, stellar rotation period, and planetary orbital period. The median relative errors of the predicted evolutionary curves were found to be 0.15 per cent, 0.43 per cent, 2.61 per cent, and 0.57 per cent, respectively. Furthermore, the speed at which we generate evolutionary curves exceeds that of model-generated curves by more than four orders of magnitude. We also extracted features of planetary migration states and utilized lightgbm to classify the samples into six categories for prediction. We found that by combining three types that undergo long-term double synchronization into one label, the classifier effectively recognized these features. Apart from systems experiencing long-term double synchronization, the median relative errors of the predicted evolutionary curves were all below 4 per cent. Our work provides an efficient method to save significant computational resources and time with minimal loss in accuracy. This research also lays the foundation for analysing the evolutionary characteristics of systems under different migration states, aiding in the understanding of the underlying physical mechanisms of such systems. Finally, to a large extent, our approach could replace the calculations of theoretical models. |
资助项目 | Chinese Academy of Sciences; Strategic Priority Research Program of Chinese Academy of Sciences[12288102]; XDB 41000000and National Natural Science Foundation of China[11973082]; XDB 41000000and National Natural Science Foundation of China[12433009]; National Natural Science Foundation of China[2021YFA1600400/2021YFA1600402]; National Key R&D Program of China[202201AT070158]; Natural Science Foundation of Yunnan Province[202302AN360001]; International Centre of Supernovae, Yunnan Key Laboratory; Stellar Astrophysics Group at Yunnan Observatories, Chinese Academy of Sciences[202205AG070009]; Yunnan Key Laboratory of Solar Physics and Space Science |
项目资助者 | Chinese Academy of Sciences ; Strategic Priority Research Program of Chinese Academy of Sciences[12288102] ; XDB 41000000and National Natural Science Foundation of China[11973082, 12433009] ; National Natural Science Foundation of China[2021YFA1600400/2021YFA1600402] ; National Key R&D Program of China[202201AT070158] ; Natural Science Foundation of Yunnan Province[202302AN360001] ; International Centre of Supernovae, Yunnan Key Laboratory ; Stellar Astrophysics Group at Yunnan Observatories, Chinese Academy of Sciences[202205AG070009] ; Yunnan Key Laboratory of Solar Physics and Space Science |
语种 | 英语 |
学科领域 | 天文学 ; 恒星与银河系 |
文章类型 | Article |
出版者 | OXFORD UNIV PRESS |
出版地 | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND |
ISSN | 0035-8711 |
URL | 查看原文 |
WOS记录号 | WOS:001299412800007 |
WOS研究方向 | Astronomy & Astrophysics |
WOS类目 | Astronomy & Astrophysics |
关键词[WOS] | LOW-MASS ; SOLAR-TYPE ; CONVECTIVE BOUNDARIES ; STELLAR ROTATION ; DISSIPATION ; MODULES ; GYROCHRONOLOGY ; BRAKING ; MODELS |
EI入藏号 | 20243516964757 |
EI主题词 | Stars |
EI分类号 | 1101 - 1302.1.2 |
引用统计 | |
文献类型 | 期刊论文 |
版本 | 出版稿 |
条目标识符 | http://ir.ynao.ac.cn/handle/114a53/27575 |
专题 | 恒星物理研究组 中国科学院天体结构与演化重点实验室 天文技术实验室 |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, People’s Republic of China; 2.School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China; 3.Key Laboratory for the Structure and Evolution of Celestial Objects, CAS, Kunming 650011, People’s Republic of China; 4.International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P. R. China; 5.Yunnan Key Laboratory of Solar Physics and Space Science, Kunming 650216, China |
第一作者单位 | 中国科学院云南天文台 |
推荐引用方式 GB/T 7714 | Guo SS,Guo JH,Ji KF,et al. The application of machine learning in tidal evolution simulation of star-planet systems[J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,2024,533(2):2199-2212. |
APA | 郭帅帅,郭建恒,季凯帆,刘辉,&邢磊.(2024).The application of machine learning in tidal evolution simulation of star-planet systems.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY,533(2),2199-2212. |
MLA | 郭帅帅,et al."The application of machine learning in tidal evolution simulation of star-planet systems".MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 533.2(2024):2199-2212. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
The application of m(2127KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[郭帅帅]的文章 |
[郭建恒]的文章 |
[季凯帆]的文章 |
百度学术 |
百度学术中相似的文章 |
[郭帅帅]的文章 |
[郭建恒]的文章 |
[季凯帆]的文章 |
必应学术 |
必应学术中相似的文章 |
[郭帅帅]的文章 |
[郭建恒]的文章 |
[季凯帆]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论