YNAO OpenIR  > 大样本恒星演化研究组
Solar Active Regions Detection and Tracking Based on Deep Learning
Gong, Long1; Yang, Yunfei1; Feng, Song1; Dai, Wei1; Liang, Bo1; Xiong JP(熊建萍)2
发表期刊SOLAR PHYSICS
2024-08
卷号299期号:8
DOI10.1007/s11207-024-02362-3
产权排序第2完成单位
收录类别SCI
关键词Active regions Multiobject detection Deep learning Target tracking
摘要Solar active regions serve as the primary energy sources of various solar activities, directly impacting the terrestrial environment. Therefore precise detection and tracking of active regions are crucial for space weather monitoring and forecasting. In this study, a total of 4577 HMI and MDI longitudinal magnetograms are selected for building the dataset, including the training set, validating set, and ten testing sets. They represent different observation instruments, different numbers of activity regions, and different time intervals. A new deep learning method, ReDetGraphTracker, is proposed for detecting and tracking the active regions in full-disk magnetograms. The cooperative modules, especially the redetection module, NSA Kalman filter, and the splitter module, better solve the problems of missing detection, discontinuous trajectory, drifting tracking bounding box, and ID change. The evaluation metrics IDF1, MOTA, MOTP, IDs, and FPS for the testing sets with 24-h interval on average are 74.0%, 74.7%, 0.130, 13.6, and 13.6, respectively. With the decreasing intervals, the metrics become better and better. The experimental results show that ReDetGraphTracker has a good performance in detecting and tracking active regions, especially capturing an active region as early as possible and terminating tracking in near-real time. It can well deal with the active regions whatever evolve drastically or with weak magnetic field strengths, in a near-real-time mode.
资助项目National Natural Science Foundation of China; SolarMonitor
项目资助者National Natural Science Foundation of China ; SolarMonitor
语种英语
学科领域天文学 ; 太阳与太阳系
文章类型Article
出版者SPRINGER
出版地VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
ISSN0038-0938
URL查看原文
WOS记录号WOS:001302514200001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]AUTOMATIC DETECTION
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27568
专题大样本恒星演化研究组
作者单位1.Faculty of Information Engineering and Automation/Yunnan Key Laboratory of Computer Technology Application, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China;
2.Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650051, China
推荐引用方式
GB/T 7714
Gong, Long,Yang, Yunfei,Feng, Song,et al. Solar Active Regions Detection and Tracking Based on Deep Learning[J]. SOLAR PHYSICS,2024,299(8).
APA Gong, Long,Yang, Yunfei,Feng, Song,Dai, Wei,Liang, Bo,&熊建萍.(2024).Solar Active Regions Detection and Tracking Based on Deep Learning.SOLAR PHYSICS,299(8).
MLA Gong, Long,et al."Solar Active Regions Detection and Tracking Based on Deep Learning".SOLAR PHYSICS 299.8(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Solar Active Regions(2798KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gong, Long]的文章
[Yang, Yunfei]的文章
[Feng, Song]的文章
百度学术
百度学术中相似的文章
[Gong, Long]的文章
[Yang, Yunfei]的文章
[Feng, Song]的文章
必应学术
必应学术中相似的文章
[Gong, Long]的文章
[Yang, Yunfei]的文章
[Feng, Song]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Solar Active Regions Detection and Tracking Based on Deep Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。