YNAO OpenIR  > 大样本恒星演化研究组
Extraction of Sunspots from Chinese Sunspot Drawings Based on Semisupervised Learning
Dong, Qianqian1; Yang, Yunfei1; Feng, Song1; Dai, Wei1; Liang, Bo1; Xiong JP(熊建萍)2
发表期刊ASTROPHYSICAL JOURNAL
2024-08-01
卷号970期号:2
DOI10.3847/1538-4357/ad4865
产权排序第2完成单位
收录类别SCI
摘要China has six observing stations, providing over 52,000 handwritten sunspot drawings from 1947-2016. The observing stations are the Purple Mountain Astronomical Observatory (PMO), Yunnan Astronomical Observatory (YNAO), Qingdao Observatory Station (QDOS), Sheshan Observatory Station (SSOS), Beijing Planetarium (BJP), and Nanjing University (NJU). In this paper, we propose a new cotraining semisupervised learning method combining a semantic segmentation method named dynamic mutual training (DMT) boundary-guided semantic segmentation (BGSeg), i.e., DMT_BGSeg, which makes full use of the labeled data from PMO and the unlabeled data from the other five stations to detect and segment sunspot components in all sunspot drawings of the six Chinese stations. The sunspot is detected and segmented. Additionally, each sunspot is split into four types of components: pore, spot, umbra, and hole. The testing results show the mIoU values of PMO, YNAO, BJP, NJU, QDOS and SSOS are 85.29, 72.65, 73.82, 64.28, 62.26, and 60.07, respectively. The results of the comparison also show that DMT_BGSeg is effective in detecting and segmenting sunspots in Chinese sunspot drawings. The numbers and areas of sunspot components are measured separately. All of the detailed data are publicly shared on China-VO, which will advance the comprehensive augmentation of the global historical sunspot database and further the understanding of the long-term solar activity cycle and solar dynamo.
资助项目National Natural Science Foundation of China[11763004]; National Natural Science Foundation of China[11573012]; National Natural Science Foundation of China[11803085]; National Natural Science Foundation of China[12063003]; National Key Research and Development Program of China[2018YFA0404603]; Yunnan Key Research and Development Program[2018IA054]; Yunnan Applied Basic Research Project[2018FB103]
项目资助者National Natural Science Foundation of China[11763004, 11573012, 11803085, 12063003] ; National Key Research and Development Program of China[2018YFA0404603] ; Yunnan Key Research and Development Program[2018IA054] ; Yunnan Applied Basic Research Project[2018FB103]
语种英语
学科领域天文学 ; 太阳与太阳系
文章类型Article
出版者IOP Publishing Ltd
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN0004-637X
URL查看原文
WOS记录号WOS:001275376500001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
关键词[WOS]ROTATION
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27494
专题大样本恒星演化研究组
作者单位1.Faculty of Information Engineering and Automation, Yunnan Key Laboratory of Computer Technology Application, Kunming University of Science and Technology, Kunming 650500, People's Republic of China; [email protected], [email protected], [email protected], [email protected], [email protected];
2.Yunnan Observatories, Chinese Academy of Sciences, 396 YangFangWang, Guandu District, Kunming 650216, People's Republic of China; [email protected]
推荐引用方式
GB/T 7714
Dong, Qianqian,Yang, Yunfei,Feng, Song,et al. Extraction of Sunspots from Chinese Sunspot Drawings Based on Semisupervised Learning[J]. ASTROPHYSICAL JOURNAL,2024,970(2).
APA Dong, Qianqian,Yang, Yunfei,Feng, Song,Dai, Wei,Liang, Bo,&熊建萍.(2024).Extraction of Sunspots from Chinese Sunspot Drawings Based on Semisupervised Learning.ASTROPHYSICAL JOURNAL,970(2).
MLA Dong, Qianqian,et al."Extraction of Sunspots from Chinese Sunspot Drawings Based on Semisupervised Learning".ASTROPHYSICAL JOURNAL 970.2(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Extraction of Sunspo(4231KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dong, Qianqian]的文章
[Yang, Yunfei]的文章
[Feng, Song]的文章
百度学术
百度学术中相似的文章
[Dong, Qianqian]的文章
[Yang, Yunfei]的文章
[Feng, Song]的文章
必应学术
必应学术中相似的文章
[Dong, Qianqian]的文章
[Yang, Yunfei]的文章
[Feng, Song]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Extraction of Sunspots from Chinese Sunspot Drawings Based on Semisupervised Learning.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。