YNAO OpenIR  > 射电天文研究组
The influence of magnetic field parameters and time step on deep learning models of solar flare prediction
Wei, Jinfang1; Zheng, Yanfang1; Li, Xuebao1; Xiang, Changtian1; Yan, Pengchao1; Huang, Xusheng1; Dong L(董亮)3,5; Lou, Hengrui2; Yan, Shuainan4,7; Ye, Hongwei1; Li, Xuefeng1; Zhang, Shunhuang1; Pan, Yexin6; Wu, Huiwen1
发表期刊ASTROPHYSICS AND SPACE SCIENCE
2024-05
卷号369期号:5
DOI10.1007/s10509-024-04314-6
产权排序第3完成单位
收录类别SCI
关键词Methods: data analysis Techniques: image processing Sun: activity Sun: flares Sun: magnetic fields
摘要The research on solar flare predicting holds significant practical and scientific value for safeguarding human activities. Current solar flare prediction models have not fully considered important factors such as time step length, nor have they conducted a comparative analysis of the physical features in multiple models or explored the consistency in the importance of features. In this work, based on SHARP data from SDO, we build 9 machine learning-based solar flare prediction models for binary Yes or No class prediction within the next 24 hours, and study the impact of different time steps and other factors on the forecasting performance. The main results are as follows. (1) The predictive performance of eight deep learning models shows an increasing trend as the time step length increases, and the models perform the best at the length of 40. (2) In predicting solar flares of >= C class and >= M class, the True Skill Statistic(TSS) of deep learning models consistently outperforms that of baseline model. For the same model, the TSS for predicting >= M class flares generally exceeds that for predicting >= C class flares. (3) The Brier Skill Score (BSS) of deep learning models significantly surpasses that of baseline model in predicting >= C class flares. However, the BSS scores of the nine models are comparable for predicting >= M class flares. For the same model, the BSS for predicting >= C class flares is generally higher than that for predicting >= M class flares. (4) Through feature importance analysis of multiple models, the common features that consistently rank at the top and bottom are identified.
资助项目National Natural Science Foundation of China
项目资助者National Natural Science Foundation of China
语种英语
学科领域天文学 ; 太阳与太阳系
文章类型Article
出版者SPRINGER
出版地VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
ISSN0004-640X
URL查看原文
WOS记录号WOS:001224090500001
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.ynao.ac.cn/handle/114a53/27194
专题射电天文研究组
作者单位1.School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China;
2.School of Software Technology, Zhejiang University, Ningbo, 315000, Zhejiang, China;
3.Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, 650216, Yunnan, China;
4.National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China;
5.Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology, Kunming, 650216, Yunnan, China;
6.MailBox 5111, Beijing, 100094, China;
7.University of Chinese Academy of Sciences, Beijing, 100049, China
推荐引用方式
GB/T 7714
Wei, Jinfang,Zheng, Yanfang,Li, Xuebao,et al. The influence of magnetic field parameters and time step on deep learning models of solar flare prediction[J]. ASTROPHYSICS AND SPACE SCIENCE,2024,369(5).
APA Wei, Jinfang.,Zheng, Yanfang.,Li, Xuebao.,Xiang, Changtian.,Yan, Pengchao.,...&Wu, Huiwen.(2024).The influence of magnetic field parameters and time step on deep learning models of solar flare prediction.ASTROPHYSICS AND SPACE SCIENCE,369(5).
MLA Wei, Jinfang,et al."The influence of magnetic field parameters and time step on deep learning models of solar flare prediction".ASTROPHYSICS AND SPACE SCIENCE 369.5(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
The influence of mag(2500KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Jinfang]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
百度学术
百度学术中相似的文章
[Wei, Jinfang]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
必应学术
必应学术中相似的文章
[Wei, Jinfang]的文章
[Zheng, Yanfang]的文章
[Li, Xuebao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: The influence of magnetic field parameters and time step on deep learning models of solar flare prediction.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。